000 02087nam a2200361 i 4500
001 CR9781108779197
003 UkCbUP
005 20240916194638.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 190522s2022||||enk o ||1 0|eng|d
020 _a9781108779197 (ebook)
020 _z9781108489676 (hardback)
020 _z9781108747448 (paperback)
040 _aUkCbUP
_beng
_erda
_cUkCbUP
050 0 0 _aQA276.12
_b.A75 2022
082 0 0 _a519.5
_223/eng20220722
100 1 _aArias-Castro, Ery,
_eauthor.
245 1 0 _aPrinciples of statistical analysis :
_blearning from randomized experiments /
_cEry Arias-Castro, University of California, San Diego.
264 1 _aCambridge, United Kingdom ;
_aNew York, NY :
_bCambridge University Press,
_c2022.
300 _a1 online resource (xvii, 389 pages) :
_bdigital, PDF file(s).
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aInstitute of Mathematical Statistics textbooks ;
_v15
500 _aTitle from publisher's bibliographic system (viewed on 27 Jul 2022).
520 _aThis compact course is written for the mathematically literate reader who wants to learn to analyze data in a principled fashion. The language of mathematics enables clear exposition that can go quite deep, quite quickly, and naturally supports an axiomatic and inductive approach to data analysis. Starting with a good grounding in probability, the reader moves to statistical inference via topics of great practical importance - simulation and sampling, as well as experimental design and data collection - that are typically displaced from introductory accounts. The core of the book then covers both standard methods and such advanced topics as multiple testing, meta-analysis, and causal inference.
650 0 _aMathematical statistics
_vTextbooks.
776 0 8 _iPrint version:
_z9781108489676
830 0 _aInstitute of Mathematical Statistics textbooks ;
_v15.
856 4 0 _uhttps://doi.org/10.1017/9781108779197
942 _2ddc
_cEB
999 _c9519
_d9519