000 03349cam a2200529 i 4500
001 9781003373216
003 FlBoTFG
005 20240213122834.0
006 m o d
007 cr cnu---unuuu
008 230419s2023 xx o 0|1 0 eng d
040 _aOCoLC-P
_beng
_erda
_epn
_cOCoLC-P
020 _a9781003373216
_q(electronic bk.)
020 _a1003373216
_q(electronic bk.)
020 _a9781000872194
_q(electronic bk. : PDF)
020 _a100087219X
_q(electronic bk. : PDF)
020 _a9781000872200
_q(electronic bk. : EPUB)
020 _a1000872203
_q(electronic bk. : EPUB)
020 _z1032428325
020 _z9781032428321
024 7 _a10.1201/9781003373216
_2doi
035 _a(OCoLC)1376455086
035 _a(OCoLC-P)1376455086
050 4 _aG70.4
072 7 _aCOM
_x037000
_2bisacsh
072 7 _aTEC
_x010000
_2bisacsh
072 7 _aTEC
_x036000
_2bisacsh
072 7 _aRGW
_2bicssc
082 0 4 _a621.3678
_223/eng/20230501
100 1 _aKumar, Anil
_c(Engineer),
_eauthor.
245 1 0 _aMulti-sensor and multi-temporal remote sensing :
_bspecific single class mapping.
264 1 _a[Place of publication not identified] :
_bCRC Press,
_c2023.
300 _a1 online resource (184 pages) :
_billustrations (black and white).
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
520 _aThis book elaborates fuzzy machine and deep learning models for single class mapping from multi-sensor, multi-temporal remote sensing images while handling mixed pixels and noise. It also covers the ways of pre-processing and spectral dimensionality reduction of temporal data. Further, it discusses the individual sample as mean' training approach to handle heterogeneity within a class. The appendix section of the book includes case studies such as mapping crop type, forest species, and stubble burnt paddy fields. Key features: Focuses on use of multi-sensor, multi-temporal data while handling spectral overlap between classes Discusses range of fuzzy/deep learning models capable to extract specific single class and separates noise Describes pre-processing while using spectral, textural, CBSI indices, and back scatter coefficient/Radar Vegetation Index (RVI) Discusses the role of training data to handle the heterogeneity within a class Supports multi-sensor and multi-temporal data processing through in-house SMIC software Includes case studies and practical applications for single class mapping This book is intended for graduate/postgraduate students, research scholars, and professionals working in environmental, geography, computer sciences, remote sensing, geoinformatics, forestry, agriculture, post-disaster, urban transition studies, and other related areas.
588 _aOCLC-licensed vendor bibliographic record.
650 0 _aRemote sensing.
650 7 _aCOMPUTERS / Machine Theory
_2bisacsh
650 7 _aTECHNOLOGY / Environmental Engineering & Technology
_2bisacsh
650 7 _aTECHNOLOGY / Remote Sensing
_2bisacsh
700 1 _aUpadhyay, Priyadarshi,
_eauthor.
700 1 _aSingh, Uttara,
_eauthor.
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9781003373216
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
999 _c6282
_d6282