000 10112cam a2200577 i 4500
001 9781003170082
003 FlBoTFG
005 20240213122832.0
006 m o d
007 cr cnu|||unuuu
008 220412s2022 xx eo 000 0 eng d
040 _aOCoLC-P
_beng
_erda
_epn
_cOCoLC-P
020 _a9781003170082
_q(electronic bk.)
020 _a1003170080
_q(electronic bk.)
020 _a9781000587074
_q(electronic bk. ;
_qPDF)
020 _a100058707X
_q(electronic bk. ;
_qPDF)
020 _a9781000587098
_q(electronic bk. ;
_qEPUB)
020 _a1000587096
_q(electronic bk. ;
_qEPUB)
020 _z9780367771652
020 _z9780367767341
024 7 _a10.1201/9781003170082
_2doi
035 _a(OCoLC)1310470794
035 _a(OCoLC-P)1310470794
050 4 _aQA76.87
072 7 _aCOM
_x044000
_2bisacsh
072 7 _aCOM
_x042000
_2bisacsh
072 7 _aCOM
_x016000
_2bisacsh
072 7 _aUYQ
_2bicssc
082 0 4 _a006.3/2
_223/eng/20220218
100 1 _aKamath, Uday,
_eauthor.
245 1 0 _aTransformers for machine learning :
_ba deep dive /
_cUday Kamath, Kenneth Graham, Wael Emara.
250 _aFirst edition.
264 1 _a[Place of publication not identified] :
_bChapman and Hall/CRC,
_c2022.
300 _a1 online resource (xxvi, 257 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
505 0 _aList of Figures List of Tables Author Bios Foreword Preface Contributors Deep Learning and Transformers: An Introduction 1.1 DEEP LEARNING: A HISTORIC PERSPECTIVE1.2 TRANSFORMERS AND TAXONOMY 1.2.1 Modified Transformer Architecture 1.2.1.1 Transformer block changes 1.2.1.2 Transformer sublayer changes 1.2.2 Pretraining Methods and Applications 1.3 RESOURCES 1.3.1 Libraries and Implementations 1.3.2 Books 1.3.3 Courses, Tutorials, and Lectures 1.3.4 Case Studies and Details Transformers: Basics and Introduction 2.1 ENCODER-DECODER ARCHITECTURE 2.2 SEQUENCE TO SEQUENCE 2.2.1 Encoder 2.2.2 Decoder 2.2.3 Training 2.2.4 Issues with RNN-based Encoder Decoder 2.3 ATTENTION MECHANISM 2.3.1 Background 2.3.2 Types of Score-Based Attention 2.3.2.1 Dot Product (multiplicative) 2.3.2.2 Scaled Dot Product or multiplicative 2.3.2.3 Linear, MLP, or additive 2.3.3 Attention-based Sequence to Sequence 2.4 TRANSFORMER 2.4.1 Source and Target Representation 2.4.1.1 Word Embedding 2.4.1.2 Positional Encoding 2.4.2 Attention Layers 2.4.2.1 Self-Attention 2.4.2.2 Multi-Head Attention 2.4.2.3 Masked Multi-Head Attention 2.4.2.4 Encoder-Decoder Multi-Head Attention 2.4.3 Residuals and Layer Normalization 2.4.4 Position-wise Feed-Forward Networks 2.4.5 Encoder 2.4.6 Decoder 2.5 CASE STUDY: MACHINE TRANSLATION 2.5.1 Goal 2.5.2 Data, Tools and Libraries 2.5.3 Experiments, Results and Analysis 2.5.3.1 Exploratory Data Analysis 2.5.3.2 Attention 2.5.3.3 Transformer2.5.3.4 Results and Analysis 2.5.3.5 Explainability Bidirectional Encoder Representations from Transformers (BERT) 3.1 BERT 3.1.1 Architecture 3.1.2 Pre-training 3.1.3 Fine-tuning 3.2 BERT VARIANTS 3.2.1 RoBERTa 3.3 APPLICATIONS 3.3.1 TaBERT 3.3.2 BERTopic 3.4 BERT INSIGHTS 3.4.1 BERT Sentence Representation 3.4.2 BERTology 3.5 CASE STUDY: TOPIC MODELING WITH TRANSFORMERS 3.5.1 Goal 3.5.2 Data, Tools, and Libraries 3.5.2.1 Data 3.5.2.2 Compute embeddings 3.5.3 Experiments, Results, and Analysis 3.5.3.1 Building Topics 3.5.3.2 Topic size distribution 3.5.3.3 Visualization of topics 3.5.3.4 Content of topics 3.6 CASE STUDY: FINE-TUNING BERT 3.6.1 Goal 3.6.2 Data, Tools and Libraries 3.6.3 Experiments, Results and Analysis Multilingual Transformer Architectures 4.1 MULTILINGUAL TRANSFORMER ARCHITECTURES 4.1.1 Basic Multilingual Transformer 4.1.2 Single-Encoder Multilingual NLU 4.1.2.1 mBERT 4.1.2.2 XLM 4.1.2.3 XLM-RoBERTa 4.1.2.4 ALM 4.1.2.5 Unicoder 4.1.2.6 INFOXL4.1.2.7 AMBER 4.1.2.8 ERNIE-M 4.1.2.9 HITCL 4.1.3 Dual-Encoder Multilingual NLU 4.1.3.1 LaBSE 4.1.3.2 mUSE 4.1.4 Multilingual NLG 4.2 MULTILINGUAL DATA 4.2.1 Pre-training Data 4.2.2 Multilingual Benchmarks 4.2.2.1 Classification 4.2.2.2 Structure Prediction 4.2.2.3 Question Answering 4.2.2.4 Semantic Retrieval 4.3 MULTILINGUAL TRANSFER LEARNING INSIGHTS 4.3.1 Zero-shot Cross-lingual Learning 4.3.1.1 Data Factors 4.3.1.2 Model Architecture Factors 4.3.1.3 Model Tasks Factors 4.3.2 Language-agnostic Cross-lingual Representations4.4 CASE STUDY 4.4.1 Goal 4.4.2 Data, Tools, and Libraries 4.4.3 Experiments, Results, and Analysis 4.4.3.1 Data Preprocessing 4.4.3.2 Experiments Transformer Modifications5.1 TRANSFORMER BLOCK MODIFICATIONS 5.1.1 Lightweight Transformers 5.1.1.1 Funnel-Transformer 5.1.1.2 DeLighT 5.1.2 Connections between Transformer Blocks 5.1.2.1 RealFormer 5.1.3 Adaptive Computation Time 5.1.3.1 Universal Transformers (UT) 5.1.4 Recurrence Relations between Transformer Blocks 5.1.4.1 Transformer-XL 5.1.5 Hierarchical Transformers 5.2 TRANSFORMERS WITH MODIFIED MULTI-HEAD SELF-ATTENTION5.2.1 Structure of Multi-head Self-Attention 5.2.1.1 Multi-head self-attention 5.2.1.2 Space and time complexity 5.2.2 Reducing Complexity of Self-attention 5.2.2.1 Longformer 5.2.2.2 Reformer 5.2.2.3 Performer 5.2.2.4 Big Bird 5.2.3 Improving Multi-head-attention 5.2.3.1 Talking-Heads Attention 5.2.4 Biasing Attention with Priors 5.2.5 Prototype Queries5.2.5.1 Clustered Attention 5.2.6 Compressed Key-Value Memory 5.2.6.1 Luna: Linear Unified Nested Attention 5.2.7 Low-rank Approximations5.2.7.1 Linformer 5.3 MODIFICATIONS FOR TRAINING TASK EFFICIENCY 5.3.1 ELECTRA5.3.1.1 Replaced token detection 5.3.2 T5 5.4 TRANSFORMER SUBMODULE CHANGES 5.4.1 Switch Transformer 5.5 CASE STUDY: SENTIMENT ANALYSIS5.5.1 Goal 5.5.2 Data, Tools, and Libraries 5.5.3 Experiments, Results, and Analysis 5.5.3.1 Visualizing attention head weights 5.5.3.2 Analysis Pretrained and Application-Specific Transformers 6.1 TEXT PROCESSING 6.1.1 Domain-Specific Transformers 6.1.1.1 BioBERT 6.1.1.2 SciBERT 6.1.1.3 FinBERT 6.1.2 Text-to-text Transformers 6.1.2.1 ByT5 6.1.3 Text generation 6.1.3.1 GPT: Generative Pre-training 6.1.3.2 GPT-2 6.1.3.3 GPT-3 6.2 COMPUTER VISION 6.2.1 Vision Transformer 6.3 AUTOMATIC SPEECH RECOGNITION 6.3.1 Wav2vec 2.0 6.3.2 Speech2Text2 6.3.3 HuBERT: Hidden Units BERT 6.4 MULTIMODAL AND MULTITASKING TRANSFORMER 6.4.1 Vision-and-Language BERT (VilBERT) 6.4.2 Unified Transformer (UniT) 6.5 VIDEO PROCESSING WITH TIMESFORMER 6.5.1 Patch embeddings 6.5.2 Self-attention 6.5.2.1 Spatiotemporal self-attention 6.5.2.2 Spatiotemporal attention blocks 6.6 GRAPH TRANSFORMERS 6.6.1 Positional encodings in a graph 6.6.1.1 Laplacian positional encodings 6.6.2 Graph transformer input 6.6.2.1 Graphs without edge attributes 6.6.2.2 Graphs with edge attributes 6.7 REINFORCEMENT LEARNING 6.7.1 Decision Transformer 6.8 CASE STUDY: AUTOMATIC SPEECH RECOGNITION 6.8.1 Goal 6.8.2 Data, Tools, and Libraries 6.8.3 Experiments, Results, and Analysis 6.8.3.1 Preprocessing speech data 6.8.3.2 Evaluation Interpretability and Explainability Techniques for Transformers7.1 TRAITS OF EXPLAINABLE SYSTEMS 7.2 RELATED AREAS THAT IMPACT EXPLAINABILITY 7.3 EXPLAINABLE METHODS TAXONOMY 7.3.1 Visualization Methods 7.3.1.1 Backpropagation-based 7.3.1.2 Perturbation-based 7.3.2 Model Distillation 7.3.2.1 Local Approximation 7.3.2.2 Model Translation 7.3.3 Intrinsic Methods 7.3.3.1 Probing Mechanism 7.3.3.2 Joint Training 7.4 ATTENTION AND EXPLANATION 7.4.1 Attention is not Explanation 7.4.1.1 Attention Weights and Feature Importance 7.4.1.2 Counterfactual Experiments 7.4.2 Attention is not not Explanation 7.4.2.1 Is attention necessary for all tasks? 7.4.2.2 Searching for Adversarial Models 7.4.2.3 Attention Probing 7.5 QUANTIFYING ATTENTION FLOW 7.5.1 Information flow as DAG 7.5.2 Attention Rollout 7.5.3 Attention Flow 7.6 CASE STUDY: TEXT CLASSIFICATION WITH EXPLAINABILITY 7.6.1 Goal 7.6.2 Data, Tools, and Libraries 7.6.3 Experiments, Results and Analysis 7.6.3.1 Exploratory Data Analysis 7.6.3.2 Experiments 7.6.3.3 Error Analysis and Explainability Bibliography Alphabetical Index
520 _aTransformers are becoming a core part of many neural network architectures, employed in a wide range of applications such as NLP, Speech Recognition, Time Series, and Computer Vision. Transformers have gone through many adaptations and alterations, resulting in newer techniques and methods. Transformers for Machine Learning: A Deep Dive is the first comprehensive book on transformers. Key Features: A comprehensive reference book for detailed explanations for every algorithm and techniques related to the transformers. 60+ transformer architectures covered in a comprehensive manner. A book for understanding how to apply the transformer techniques in speech, text, time series, and computer vision. Practical tips and tricks for each architecture and how to use it in the real world. Hands-on case studies and code snippets for theory and practical real-world analysis using the tools and libraries, all ready to run in Google Colab. The theoretical explanations of the state-of-the-art transformer architectures will appeal to postgraduate students and researchers (academic and industry) as it will provide a single entry point with deep discussions of a quickly moving field. The practical hands-on case studies and code will appeal to undergraduate students, practitioners, and professionals as it allows for quick experimentation and lowers the barrier to entry into the field.
588 _aOCLC-licensed vendor bibliographic record.
650 0 _aNeural networks (Computer science)
650 0 _aComputational intelligence.
650 0 _aMachine learning.
650 7 _aCOMPUTERS
_xNeural Networks.
_2bisacsh
650 7 _aCOMPUTERS
_xNatural Language Processing.
_2bisacsh
650 7 _aCOMPUTERS
_xComputer Vision & Pattern Recognition.
_2bisacsh
700 1 _aGraham, Kenneth L.
700 1 _aEmara, Wael
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/e/9781003170082
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
999 _c5955
_d5955