000 03631cam a22005178i 4500
001 9781003167372
003 FlBoTFG
005 20240213122832.0
006 m o d
007 cr |||||||||||
008 210928s2022 flu ob 001 0 eng
040 _aOCoLC-P
_beng
_erda
_cOCoLC-P
020 _a9781003167372
_q(ebk)
020 _a1003167373
020 _z9780367765279
_q(hbk)
020 _z9780367765286
_q(pbk)
020 _a9781000541380
_q(electronic bk. : EPUB)
020 _a100054138X
_q(electronic bk. : EPUB)
020 _a9781000541335
_q(electronic bk. : PDF)
020 _a1000541339
_q(electronic bk. : PDF)
035 _a(OCoLC)1273727631
035 _a(OCoLC-P)1273727631
050 0 0 _aTA483
072 7 _aTEC
_x021030
_2bisacsh
072 7 _aTEC
_x023000
_2bisacsh
072 7 _aTGM
_2bicssc
082 0 0 _a620.1/6
_223/eng/20211117
100 1 _aJha, Rajesh,
_eauthor.
245 1 0 _aArtificial intelligence-aided materials design :
_bAI-algorithms and case studies on alloys and metallurgical processes /
_cRajesh Jha and Bimal Kumar Jha.
250 _aFirst edition.
264 1 _aBoca Raton, FL :
_bCRC Press,
_c2022.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
520 _a"This book describes the application of artificial intelligence (AI)/machine learning (ML) concepts to develop predictive models that can be used to design alloy materials. Readers new to AI/ML algorithms can use the book as a starting point and use the included MATLAB and Python implementation of AI/ML algorithms through included case studies. Experienced AI/ML researchers who want to try new algorithms can use this book and study the case studies for reference. This book is written for materials scientists and metallurgists interested in the application of AI, ML, and data science in the development of new materials"--
_cProvided by publisher.
505 0 _a1. Introduction. 2. Metallurgical/Materials Concepts. 3. Artificial Intelligence Algorithms. 4. Case Study 1: Nanomechanics and Nanotribology: Combined Machine Learning-Experimental Approach. 5. Case Study 2: Design of Hard Magnetic Alnico Alloys: Combined Machine Learning-Experimental Approach. 6. Case Study 3: Design of Soft Magnetic Finemet Type Alloys: Combined Machine Learning-CALPHAD Approach. 7. Case Study 4: Design of Nickel-Base Superalloys: Combined Machine Learning-CALPHAD Approach. 8. Case Study 5: Design of Aluminum Alloys: Combined Machine Learning-CALPHAD Approach. 9. Case Study 6: Design of Titanium Alloys for High-Temperature Application: Combined Machine Learning-CALPHAD Approach. 10. Case Study 7: Design of Titanium Based Biomaterials: Combined Machine Learning-CALPHAD Approach. 11. Case Study 8: Industrial Furnaces I: Application of Machine Learning on an Industrial Iron Making Blast Furnace Data. 12. Case Study 9: Industrial Furnaces II: Application of Machine Learning Algorithms on an Industrial LD Steel Making Furnace Data. 13. Software/Codes Included with this Book. 14. Conclusion.
588 _aOCLC-licensed vendor bibliographic record.
650 0 _aMetallurgy
_xData processing.
650 0 _aAlloys
_xData processing.
650 0 _aArtificial intelligence
_xIndustrial applications.
650 7 _aTECHNOLOGY / Metallurgy
_2bisacsh
700 1 _aJha, B. K.
_q(Bimal K.),
_eauthor.
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9781003167372
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
999 _c5945
_d5945