000 03489cam a22005418i 4500
001 9781003137993
003 FlBoTFG
005 20240213122831.0
006 m o d
007 cr |||||||||||
008 210405s2022 flu ob 001 0 eng
040 _aOCoLC-P
_beng
_erda
_cOCoLC-P
020 _a9781003137993
_q(ebk)
020 _a1003137997
020 _a9781000453768
_q(electronic bk. : EPUB)
020 _a1000453766
_q(electronic bk. : EPUB)
020 _a9781000453751
_q(electronic bk. : PDF)
020 _a1000453758
_q(electronic bk. : PDF)
020 _z9780367685348
_q(hbk)
020 _z9780367685379
_q(pbk)
035 _a(OCoLC)1245961276
035 _a(OCoLC-P)1245961276
050 0 0 _aT57.5
072 7 _aTEC
_x029000
_2bisacsh
072 7 _aAKP
_2bicssc
082 0 0 _a620.00285
_223
245 0 0 _aEngineering analytics :
_badvances in research and applications /
_cedited by Luis Rabelo, Edgar Gutierrez-Franco, Alfonso Sarmiento, and Christopher Mejía-Argueta.
250 _aFirst edition.
264 1 _aBoca Raton :
_bCRC Press,
_c2022.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
505 2 _aInteractive visualization to support data and analytics-driven supply chain design decisions / Milena Janjevic and Matthias Winkenbach -- Analysis of IoT implementations using agent-based modeling : two case studies / Mohammed Basingab, Khalid Nagadi, Atif Shahzad, and Ghada Elnaggar.
520 _a"Engineering analytics is becoming a necessary skill for every engineer. Areas such as Operations Research, Simulation, and Machine Learning can be totally transformed through massive volumes of data. This book is intended to be an introduction to Engineering Analytics that can be used to improve performance tracking, customer segmentation for resource optimization, patterns and classification strategies, and logistics control towers. Basic methods in the areas of visual, descriptive, predictive, and prescriptive analytics and Big Data are introduced. Industrial case studies and example problem demonstrations are used throughout the book to reinforce the concepts and applications. The book goes on to cover visual analytics and its relationships, simulation from the respective dimensions and Machine Learning and Artificial Intelligence from different paradigms viewpoints. The book is intended for professionals wanting to work on analytical problems, for Engineering students, Researchers, Chief-Technology Officers, and Directors that work within the areas and fields of Industrial Engineering, Computer Science, Statistics, Electrical Engineering Operations Research, and Big Data"--
_cProvided by publisher.
588 _aOCLC-licensed vendor bibliographic record.
650 0 _aIndustrial engineering
_xData processing.
650 0 _aSystem analysis
_xData processing.
650 0 _aBig data.
650 0 _aEngineering mathematics.
650 7 _aTECHNOLOGY / Operations Research
_2bisacsh
700 1 _aRabelo Mendizabal, Luis C.
_q(Luis Carlos),
_d1960-
_eeditor.
700 1 _aGutierrez-Franco, Edgar,
_eeditor.
700 1 _aSarmiento, Alfonso,
_eeditor.
700 1 _aMejía-Argueta, Christopher,
_eeditor.
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9781003137993
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
999 _c5878
_d5878