000 05384cam a2200565Ki 4500
001 9781003033707
003 FlBoTFG
005 20240213122830.0
006 m o d
007 cr cnu|||unuuu
008 211007s2022 xx o 000 0 eng d
040 _aOCoLC-P
_beng
_erda
_epn
_cOCoLC-P
020 _a9781003033707
_q(electronic bk.)
020 _a1003033709
_q(electronic bk.)
020 _z9781032169231
020 _a9781000538694
_q(electronic bk. : EPUB)
020 _a1000538699
_q(electronic bk. : EPUB)
020 _a9781000538618
_q(electronic bk. : PDF)
020 _a1000538613
_q(electronic bk. : PDF)
020 _z9780367464127
035 _a(OCoLC)1273728002
035 _a(OCoLC-P)1273728002
050 4 _aQA166
072 7 _aBUS
_x061000
_2bisacsh
072 7 _aCOM
_x000000
_2bisacsh
072 7 _aCOM
_x012040
_2bisacsh
072 7 _aUMB
_2bicssc
082 0 4 _a511/.5
_223/eng/20211105
245 0 0 _aMassive graph analytics /
_cedited by David A. Bader.
250 _aFirst edition.
264 1 _a[Place of publication not identified] :
_bChapman and Hall/CRC,
_c2022.
300 _a1 online resource (544 pages).
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 0 _aChapman & Hall/CRC Data Science Series
505 0 _aAbout the EditorList of ContributorsIntroductionAlgorithms: Search and PathsA Work-Efficient Parallel Breadth-First Search Algorithm (or How to Cope With the Nondeterminism of Reducers)Charles E. Leiserson and Tao B. Schardl Multi-Objective Shortest PathsStephan Erb, Moritz Kobitzsch, Lawrence Mandow , and Peter Sanders Algorithms: Structure Multicore Algorithms for Graph Connectivity ProblemsGeorge M. Slota, Sivasankaran Rajamanickam, and Kamesh Madduri Distributed Memory Parallel Algorithms for Massive GraphsMaksudul Alam, Shaikh Arifuzzaman, Hasanuzzaman Bhuiyan, Maleq Khan, V.S. Anil Kumar, and Madhav Marathe Efficient Multi-core Algorithms for Computing Spanning Forests and Connected ComponentsFredrik Manne, Md. Mostofa Ali Patwary Massive-Scale Distributed Triangle Computation and ApplicationsGeoffrey Sanders, Roger Pearce, Benjamin W. Priest, Trevor Steil Algorithms and Applications Computing Top-k Closeness Centrality in Fully-dynamic GraphsEugenio Angriman, Patrick Bisenius, Elisabetta Bergamini, Henning Meyerhenke Ordering Heuristics for Parallel Graph ColoringWilliam Hasenplaugh, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson Partitioning Trillion Edge GraphsGeorge M. Slota, Karen Devine, Sivasankaran Rajamanickam, Kamesh Madduri New Phenomena in Large-Scale Internet TrafficJeremy Kepner, Kenjiro Cho, KC Claffy, Vijay Gadepally, Sarah McGuire, Peter Michaleas, Lauren Milechin Parallel Algorithms for Butterfly ComputationsJessica Shi and Julian Shun Models Recent Advances in Scalable Network GenerationManuel Penschuck, Ulrik Brandes, Michael Hamann, Sebastian Lamm, Ulrich Meyer, Ilya Safro, Peter Sanders, and Christian Schulz Computational Models for Cascades in Massive Graphs: How to Spread a Rumor in ParallelAjitesh Srivastava, Charalampos Chelmis, Viktor K. Prasanna Executing Dynamic Data-Graph Computations Deterministically Using Chromatic SchedulingTim Kaler, William Hasenplaugh, Tao B. Schardl, and Charles E.Leiserson Frameworks and Software Graph Data Science Using Neo4jAmy E. Hodler, Mark Needham The Parallel Boost Graph Library 2.0Nicholas Edmonds and Andrew Lumsdaine RAPIDS cuGraphAlex Fender, Bradley Rees, Joe Eaton A Cloud-based approach to Big GraphsPaul Burkhardt and Christopher A. Waring Introduction to GraphBLASJeremy Kepner, Peter Aaltonen, David Bader, Aydin Buluc, Franz Franchetti, John Gilbert, Dylan Hutchinson, Manoj Kumar, Andrew Lumsdaine, Henning Meyerhenke, Scott McMillian, Jose Moreira, John D. Owens, Carl Yang, Marcin Zalewski, and Timothy G. MattsonGraphulo: Linear Algebra Graph KernelsVijay Gadepally, Jake Bolewski, Daniel Hook, Shana Hutchison, Benjamin A Miller, Jeremy Kepner Interactive Graph Analytics at Scale in ArkoudaZhihui Du, Oliver Alvarado Rodriguez, Joseph Patchett, and David A. Bader
520 _aExpertise in massive scale graph analytics is key for solving real-world grand challenges from health to sustainability to detecting insider threats, cyber defense, and more. Massive Graph Analytics provides a comprehensive introduction to massive graph analytics, featuring contributions from thought leaders across academia, industry, and government. The book will be beneficial to students, researchers and practitioners, in academia, national laboratories, and industry, who wish to learn about the state-of-the-art algorithms, models, frameworks, and software in massive scale graph analytics.
588 _aOCLC-licensed vendor bibliographic record.
650 7 _aBUSINESS & ECONOMICS / Statistics
_2bisacsh
650 7 _aCOMPUTERS / General
_2bisacsh
650 7 _aCOMPUTERS / Computer Graphics / Game Programming & Design
_2bisacsh
650 0 _aGraph theory
_xData processing.
650 0 _aGraph algorithms.
650 0 _aBig data.
650 0 _aData mining.
700 1 _aBader, David A.,
_d1969-
_eeditor.
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9781003033707
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
999 _c5696
_d5696