000 | 05674cam a2200565 i 4500 | ||
---|---|---|---|
001 | 9781003251903 | ||
003 | FlBoTFG | ||
005 | 20240213122827.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 230307s2023 flu ob 001 0 eng d | ||
040 |
_aOCoLC-P _beng _erda _epn _cOCoLC-P |
||
020 |
_a9781003251903 _q(electronic bk.) |
||
020 |
_a1003251900 _q(electronic bk.) |
||
020 |
_a9781000823158 _q(electronic bk. : PDF) |
||
020 |
_a1000823156 _q(electronic bk. : PDF) |
||
020 |
_a9781000823202 _q(electronic bk. : EPUB) |
||
020 |
_a1000823202 _q(electronic bk. : EPUB) |
||
020 | _z9781032168302 | ||
020 | _z1032168307 | ||
020 | _z9781032171265 | ||
020 | _z103217126X | ||
024 | 7 |
_a10.1201/9781003251903 _2doi |
|
035 | _a(OCoLC)1372013402 | ||
035 | _a(OCoLC-P)1372013402 | ||
050 | 4 | _aR855.3 | |
072 | 7 |
_aCOM _x037000 _2bisacsh |
|
072 | 7 |
_aCOM _x004000 _2bisacsh |
|
072 | 7 |
_aCOM _x079010 _2bisacsh |
|
072 | 7 |
_aUMB _2bicssc |
|
082 | 0 | 4 |
_a610.285 _223/eng/20230316 |
245 | 0 | 0 |
_aArtificial intelligence for disease diagnosis and prognosis in smart healthcare / _cedited by Ghita K. Mostefaoui, S.M. Riazul Islam, Faisal Tariq. |
264 | 1 |
_aBoca Raton : _bCRC Press, Taylor & Francis Group, _c2023. |
|
300 | _a1 online resource. | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
505 | 0 | _aMachine Learning for Disease Assessment / Sujay Saha and Shekh Md Mahmudul Islam -- Precision medicine and future healthcare / Muhammad Afzal, Maqbool Hussain -- AI-driven drug response prediction for personalised cancer medicine / Julhash U. Kaz -- Skin Disease Recognition and Classification Using Machine Learning and Deep Learning in Python / Masum Shah Junayed, Md Baharul Islam, Arezoo Sadeghzadeh -- COVID-19 Diagnosis Based Deep Learning Approaches for COVIDX Dataset : A Preliminary Survey / Esraa Hassan, Mahmoud Y. Shams, Noha A. Hikal, Samir Elmougy -- Automatic grading of invasive breast cancer patients for the decision of therapeutic plan / Hossain Md Shakhawat, Matthew Hanna, Kareem Ibrahim, Rene Serrette, Peter Ntiamoah, Marcia Edelweiss, Edi Brogi, Meera Hameed, Masahiro Yamaguchi, Dara Ross, Yukako Yagi -- Prognostic Role of CALD1 in Brain Cancer : A Data-driven Review / S. M. Riazul Islam, Subbroto Kumar Saha, Afsana Nishat , and Shaker El-Sappagh -- Artificial Intelligence for Parkinson's Disease Diagnosis : A Review / Md. Moradul Siddique, Yeasir Arefin Tusher, Dr. Md. Humaun Kabir, Mohammad Farhad Bulbul and Dr. Syed Md. Galib -- Breast Cancer Detection : A Survey / Esraa Hassan, Fatma M. Talaat, Zeinab Hassan, Nora El-Rashidy -- Review of artifact detection methods for automated analysis and diagnosis in digital pathology / Hossain Md Shakhawat, Md Sakir Hossain, M M Manjurul Islam, Md Alamgir Kabir, S M Hasan Mahmud, and Faisal Tariq -- Machine Learning Enabled Detection and Management of Diabetes Mellitus / Shafiqul Islam -- IoT and deep learning-based smart healthcare with an integrated security system to detect various skin lesions / Md Khairul Islam, Md Al Amin, Md. Mojibur Rahman Redoy Akanda, Md. Shabuj Hossen, Feroza -- Naznin, Md Zahidul Islam, Mohammad Ali Mon -- Real-Time Facemask Detection Using Deep Convolutional Neural Network-based Transfer Learning / Jakaria Islam Emon, M M Manjurul Islam, Syeda Amina Abedin, Md Shakhawat Hossain, Rupam Kumar Das -- Security Challenges in Wireless Body Area Networks for Smart Healthcare / Muhammad Shadi Hajar, Harsha Kumara Kalutarage , and M. Omar Al-Kadri -- Machine Learning Based Security and Privacy Protection Approach to Handle the Physiological Data / M. Humayun Kabir -- Conclusion : Future Challenges in Artificial Intelligence for Smart -- Healthcare / Faisal Tariq, S. M. Riazul Islam, and Ghita Kouadri Mostefaoui. | |
520 |
_a"Artificial Intelligence (AI) in general and machine learning (ML) and deep learning (DL) in particular and related digital technologies are a couple of fledging paradigms that the next generation healthcare services are sprouting towards. These digital technologies can transform various aspects of healthcare, leveraging advances in computing and communication power. With a new spectrum of business opportunities, AI-powered healthcare services would improve the lives of patients, their families, and societies. However, the application of AI in the healthcare field requires special attention given the direct implication with human life and well-being. Rapid progress in AI leads to the possibility of exploiting healthcare data for designing practical tools for automated diagnosis of chronic diseases such as dementia and diabetes. This book highlights the current research trends in applying AI models in various disease diagnoses and prognoses to provide enhanced healthcare solutions. The primary audience of the book will be postgraduate students and researchers in the broad domain of healthcare technologies"-- _cProvided by publisher. |
||
588 | _aOCLC-licensed vendor bibliographic record. | ||
650 | 0 |
_aArtificial intelligence _xMedical applications. |
|
650 | 7 |
_aCOMPUTERS / Machine Theory _2bisacsh |
|
650 | 7 |
_aCOMPUTERS / Artificial Intelligence _2bisacsh |
|
650 | 7 |
_aCOMPUTERS / Social Aspects / Human-Computer Interaction _2bisacsh |
|
700 | 1 |
_aMostefaoui, Ghita K., _eeditor. |
|
700 | 1 |
_aIslam, S. M. Riazul, _eeditor. |
|
700 | 1 |
_aTariq, Faisal, _eeditor. |
|
856 | 4 | 0 |
_3Taylor & Francis _uhttps://www.taylorfrancis.com/books/9781003251903 |
856 | 4 | 2 |
_3OCLC metadata license agreement _uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf |
999 |
_c5147 _d5147 |