000 04138cam a2200529Ki 4500
001 9781003162810
003 FlBoTFG
005 20240213122825.0
006 m o d
007 cr cnu|||unuuu
008 211007s2022 xx eo 000 0 eng d
040 _aOCoLC-P
_beng
_erda
_epn
_cOCoLC-P
020 _a9781003162810
_q(electronic bk.)
020 _a1003162819
_q(electronic bk.)
020 _z9780367755287
020 _z9780367744700
020 _a9781000540925
_q(electronic bk. : PDF)
020 _a1000540928
_q(electronic bk. : PDF)
020 _a9781000540963
_q(electronic bk. : EPUB)
020 _a1000540960
_q(electronic bk. : EPUB)
035 _a(OCoLC)1273727604
035 _a(OCoLC-P)1273727604
050 4 _aTA1634
072 7 _aCOM
_x012000
_2bisacsh
072 7 _aCOM
_x012040
_2bisacsh
072 7 _aCOM
_x016000
_2bisacsh
072 7 _aUYQ
_2bicssc
082 0 4 _a006.3/7
_223/eng/20211028
245 0 0 _aLow-power computer vision :
_bimprove the efficiency of artificial intelligence /
_cedited by George K. Thiruvathukal, Yung-Hsiang Lu, Jaeyoun Kim, Yiran Chen, Bo Chen.
250 _aFirst edition.
264 1 _a[Place of publication not identified] :
_bChapman and Hall/CRC,
_c2022.
300 _a1 online resource (344 pages).
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
505 0 _aSection I IntroductionBook IntroductionYung-Hsiang Lu, George K. Thiruvathukal, Jaeyoun Kim, Yiran Chen, and Bo ChenHistory of Low-Power Computer Vision ChallengeYung-Hsiang Lu and Xiao Hu, Yiran Chen, Joe Spisak, Gaurav Aggarwal, Mike Zheng Shou, and George K. ThiruvathukalSurvey on Energy-Efficient Deep Neural Networks for Computer VisionAbhinav Goel, Caleb Tung, Xiao Hu, Haobo Wang, and Yung-Hsiang Lu and George K. ThiruvathukalSection II Competition WinnersHardware design and software practices for efficient neural network inferenceYu Wang, Xuefei Ning, Shulin Zeng, Yi Kai, Kaiyuan Guo, and Hanbo Sun, Changcheng Tang, Tianyi Lu, Shuang Liang, and Tianchen ZhaoProgressive Automatic Design of Search Space for One-Shot Neural Architecture SearchXin Xia, Xuefeng Xiao, and Xing WangFast Adjustable Threshold For Uniform Neural Network QuantizationAlexander Goncharenko, Andrey Denisov, and Sergey AlyamkinPower-efficient Neural Network Scheduling on Heterogeneous SoCsYing Wang, Xuyi Cai, and Xiandong ZhaoEfficient Neural Network ArchitecturesHan Cai and Song HanDesign Methodology for Low Power Image Recognition SystemsSoonhoi Ha, EunJin Jeong, Duseok Kang, Jangryul Kim, and Donghyun KangGuided Design for Efficient On-device Object Detection ModelTao Sheng and Yang LiuSection III Invited ArticlesQuantizing Neural NetworksMarios Fournarakis, Markus Nagel, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen, and Tijmen BlankevoortA practical guide to designing efficient mobile architecturesMark Sandler and Andrew HowardA Survey of Quantization Methods for Efficient Neural Network InferenceAmir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael Mahoney, and Kurt KeutzerBibliographyIndex
520 _aEnergy efficiency is critical for running computer vision on battery-powered systems, such as mobile phones or UAVs (unmanned aerial vehicles, or drones). This book collects the methods that have won the annual IEEE Low-Power Computer Vision Challenges since 2015. The winners share their solutions and provide insight on how to improve the efficiency of machine learning systems.
588 _aOCLC-licensed vendor bibliographic record.
650 7 _aCOMPUTERS / Computer Graphics / General
_2bisacsh
650 7 _aCOMPUTERS / Computer Graphics / Game Programming & Design
_2bisacsh
650 7 _aCOMPUTERS / Computer Vision & Pattern Recognition
_2bisacsh
650 0 _aComputer vision.
650 0 _aLow voltage systems.
700 1 _aThiruvathukal, George K.
_q(George Kuriakose),
_eeditor.
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9781003162810
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
999 _c4935
_d4935