000 01605nam a22001817a 4500
003 OSt
005 20241104140852.0
008 241104b |||||||| |||| 00| 0 eng d
020 _a9781107439955
040 _beng
_cNLU
082 _223rd Ed.
_a006.31
_bBAR
100 _aBarber, David
245 _aBayesian Reasoning and Machine Learning/
_cBy David Barber
260 _a New Delhi:
_bCambridge University Press,
_c2012.
300 _a697P;,
_bxxiv,
_c24cm.
500 _aCONTENTS Preface List of Notation BRML TOOLBOX I Inference in Probabilistic Models 1. Probabilistic Reasoning. 2. Basic Graph Concepts. 3. Belief Networks. 4. Graphical Models. 5. Efficient Inference in Trees. 6. The Junction Tree Algorithm. 7. Making Decisions. II Learning in Probabilistic Model 8. Statistics for Machine Learning. 9. Learning as Inference as Inference. 10. Naive Bayes. 11. Learning With Hidden Variables. 12. Bayesian Model Selection. III Machine Learning 13. Machine Learning Concepts 14. Nearest Neighbour Classification. 15. unsupervised Linear Dimension Reduction. 16. Supervised Linear Dimension reduction. 17. Linear Models. 18. Bayesian Linear Models. 19. Gaussian Processes. 20. Mixture Models. 21. Latent Linear Models. 22. Latent Ability Models. IV Dynamical Models. 23. Discrete-State Markov Models. 24. Continuous-State Markov Models. 25. Switching Linear Dynamical Systems. 26. Distributed Computation. V Approximate Interference. 27. Sampling. 28. Deterministic Approximate Inference. Includes Appendix, Reference and Index.
942 _2ddc
_cBK
_n0
999 _c13378
_d13378