000 | 05276cam a2200649Ma 4500 | ||
---|---|---|---|
001 | on1317436663 | ||
003 | OCoLC | ||
005 | 20240523125544.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 060731s2007 njua ob 001 0 eng d | ||
010 | _z 2006025099 | ||
040 |
_aSFB _beng _cSFB _dOCLCF _dOCLCQ _dOCLCO _dOCLCL |
||
020 | _a1280901039 | ||
020 | _a9781280901034 | ||
020 | _a9786610901036 | ||
020 | _a6610901031 | ||
020 | _a0470108096 | ||
020 | _a9780470108093 | ||
020 | _a0470108088 | ||
020 | _a9780470108086 | ||
035 | _a(OCoLC)1317436663 | ||
050 | 4 |
_aQA76.9.D343 _bM38 2007 |
|
082 | 0 | 4 | _a005.74 |
049 | _aMAIN | ||
100 | 1 |
_aMarkov, Zdravko, _d1956- |
|
245 | 1 | 0 |
_aData mining the Web _h[electronic resource] : _buncovering patterns in Web content, structure, and usage / _cZdravko Markov and Daniel T. Larose. |
260 |
_aHoboken, N.J. : _bWiley-Interscience, _cc2007. |
||
300 | _a1 online resource (236 p.). | ||
336 |
_atext _btxt |
||
337 |
_acomputer _bc |
||
338 |
_aonline resource _bcr |
||
490 | 1 | _aWiley series on methods and applications in data mining | |
500 | _aDescription based upon print version of record. | ||
505 | 0 | _aDATA MINING THE WEB; CONTENTS; PREFACE; ACKNOWLEDGMENTS; PART I WEB STRUCTURE MINING; 1 INFORMATION RETRIEVAL AND WEB SEARCH; Web Challenges; Web Search Engines; Topic Directories; Semantic Web; Crawling the Web; Web Basics; Web Crawlers; Indexing and Keyword Search; Document Representation; Implementation Considerations; Relevance Ranking; Advanced Text Search; Using the HTML Structure in Keyword Search; Evaluating Search Quality; Similarity Search; Cosine Similarity; Jaccard Similarity; Document Resemblance; References; Exercises; 2 HYPERLINK-BASED RANKING; Introduction | |
505 | 8 | _aSocial Networks AnalysisPageRank; Authorities and Hubs; Link-Based Similarity Search; Enhanced Techniques for Page Ranking; References; Exercises; PART II WEB CONTENT MINING; 3 CLUSTERING; Introduction; Hierarchical Agglomerative Clustering; k-Means Clustering; Probabilty-Based Clustering; Finite Mixture Problem; Classification Problem; Clustering Problem; Collaborative Filtering (Recommender Systems); References; Exercises; 4 EVALUATING CLUSTERING; Approaches to Evaluating Clustering; Similarity-Based Criterion Functions; Probabilistic Criterion Functions | |
505 | 8 | _aMDL-Based Model and Feature EvaluationMinimum Description Length Principle; MDL-Based Model Evaluation; Feature Selection; Classes-to-Clusters Evaluation; Precision, Recall, and F-Measure; Entropy; References; Exercises; 5 CLASSIFICATION; General Setting and Evaluation Techniques; Nearest-Neighbor Algorithm; Feature Selection; Naive Bayes Algorithm; Numerical Approaches; Relational Learning; References; Exercises; PART III WEB USAGE MINING; 6 INTRODUCTION TO WEB USAGE MINING; Definition of Web Usage Mining; Cross-Industry Standard Process for Data Mining; Clickstream Analysis | |
505 | 8 | _aWeb Server Log FilesRemote Host Field; Date/Time Field; HTTP Request Field; Status Code Field; Transfer Volume (Bytes) Field; Common Log Format; Identification Field; Authuser Field; Extended Common Log Format; Referrer Field; User Agent Field; Example of a Web Log Record; Microsoft IIS Log Format; Auxiliary Information; References; Exercises; 7 PREPROCESSING FOR WEB USAGE MINING; Need for Preprocessing the Data; Data Cleaning and Filtering; Page Extension Exploration and Filtering; De-Spidering the Web Log File; User Identification; Session Identification; Path Completion | |
505 | 8 | _aDirectories and the Basket TransformationFurther Data Preprocessing Steps; References; Exercises; 8 EXPLORATORY DATA ANALYSIS FOR WEB USAGE MINING; Introduction; Number of Visit Actions; Session Duration; Relationship between Visit Actions and Session Duration; Average Time per Page; Duration for Individual Pages; References; Exercises; 9 MODELING FOR WEB USAGE MINING: CLUSTERING, ASSOCIATION, AND CLASSIFICATION; Introduction; Modeling Methodology; Definition of Clustering; The BIRCH Clustering Algorithm; Affinity Analysis and the A Priori Algorithm | |
500 | _aDiscretizing the Numerical Variables: Binning. | ||
520 | _aThis book introduces the reader to methods of data mining on the web, including uncovering patterns in web content (classification, clustering, language processing), structure (graphs, hubs, metrics), and usage (modeling, sequence analysis, performance). | ||
546 | _aEnglish. | ||
504 | _aIncludes bibliographical references and index. | ||
590 |
_aJohn Wiley and Sons _bWiley Online Library: Complete oBooks |
||
650 | 0 | _aData mining. | |
650 | 0 | _aWeb databases. | |
650 | 6 | _aExploration de donn�ees (Informatique) | |
650 | 6 | _aBases de donn�ees sur le Web. | |
650 | 7 |
_aData mining _2fast |
|
650 | 7 |
_aWeb databases _2fast |
|
700 | 1 | _aLarose, Daniel T. | |
758 |
_ihas work: _aData mining the Web (Text) _1https://id.oclc.org/worldcat/entity/E39PCGmjGK3FvHrf8jGBghfrdP _4https://id.oclc.org/worldcat/ontology/hasWork |
||
776 | _z0-471-66655-6 | ||
830 | 0 | _aWiley series on methods and applications in data mining. | |
856 | 4 | 0 | _uhttps://onlinelibrary.wiley.com/doi/book/10.1002/0470108096 |
994 |
_a92 _bINLUM |
||
999 |
_c12890 _d12890 |