000 | 07638cam a2200673 i 4500 | ||
---|---|---|---|
001 | on1266222675 | ||
003 | OCoLC | ||
005 | 20240523125543.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 210831s2021 nju o 000 0 eng d | ||
040 |
_aDG1 _beng _erda _epn _cDG1 _dOCLCO _dOCLCF _dDG1 _dUKAHL _dUKMGB _dN$T _dOCLCO _dOCLCQ _dSFB _dOCLCQ _dUPM _dOCLCQ _dWSU _dOCLCO _dOCLCL |
||
015 |
_aGBC1D7804 _2bnb |
||
016 | 7 |
_a020300524 _2Uk |
|
020 |
_a9781119769262 _q(electronic bk. ; _qoBook) |
||
020 |
_a1119769264 _q(electronic bk. ; _qoBook) |
||
020 | _a1119769248 | ||
020 |
_a9781119769248 _q(electronic bk.) |
||
020 | _z9781119768852 | ||
020 | _z1119768853 | ||
024 | 7 |
_a10.1002/9781119769262 _2doi |
|
029 | 1 |
_aAU@ _b000069952149 |
|
029 | 1 |
_aUKMGB _b020300524 |
|
035 | _a(OCoLC)1266222675 | ||
037 |
_a9781119769248 _bWiley |
||
050 | 4 | _aQ325.5 | |
082 | 0 | 4 |
_a006.3/1 _223 |
049 | _aMAIN | ||
245 | 0 | 0 |
_aMachine learning algorithms and applications / _cedited by Mettu Srinivas, G. Sucharitha, Anjanna Matta. |
264 | 1 |
_aHoboken : _bWiley : _bScrivener Publishing, _c2021. |
|
300 | _a1 online resource (1 volume) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
588 | 0 | _aPrint version record. | |
505 | 0 | _aIntro -- Table of Contents -- Title Page -- Copyright -- Acknowledgments -- Preface -- Part 1: Machine Learning for Industrial Applications -- 1 A Learning-Based Visualization Application for Air Quality Evaluation During COVID-19 Pandemic in Open Data Centric Services -- 1.1 Introduction -- 1.2 Literature Survey -- 1.3 Implementation Details -- 1.4 Results and Discussions -- 1.5 Conclusion -- References -- 2 Automatic Counting and Classification of Silkworm Eggs Using Deep Learning -- 2.1 Introduction -- 2.2 Conventional Silkworm Egg Detection Approaches -- 2.3 Proposed Method -- 2.4 Dataset Generation -- 2.5 Results -- 2.6 Conclusion -- Acknowledgment -- References -- 3 A Wind Speed Prediction System Using Deep Neural Networks -- 3.1 Introduction -- 3.2 Methodology -- 3.3 Results and Discussions -- 3.4 Conclusion -- References -- 4 Res-SE-Net: Boosting Performance of ResNets by Enhancing Bridge Connections -- 4.1 Introduction -- 4.2 Related Work -- 4.3 Preliminaries -- 4.4 Proposed Model -- 4.5 Experiments -- 4.6 Results -- 4.7 Conclusion -- References -- 5 Sakshi Aggarwal, Navjot Singh and K.K. Mishra -- 5.1 Genesis -- 5.2 The Big Picture: Artificial Neural Network -- 5.3 Delineating the Cornerstones -- 5.4 Deep Learning Architectures -- 5.5 Why is CNN Preferred for Computer Vision Applications? -- 5.6 Unravel Deep Learning in Medical Diagnostic Systems -- 5.7 Challenges and Future Expectations -- 5.8 Conclusion -- References -- 6 Two-Stage Credit Scoring Model Based on Evolutionary Feature Selection and Ensemble Neural Networks -- 6.1 Introduction -- 6.2 Literature Survey -- 6.3 Proposed Model for Credit Scoring -- 6.4 Results and Discussion -- 6.5 Conclusion -- References -- 7 Enhanced Block-Based Feature Agglomeration Clustering for Video Summarization -- 7.1 Introduction -- 7.2 Related Works -- 7.3 Feature Agglomeration Clustering. | |
505 | 8 | _a7.4 Proposed Methodology -- 7.5 Results and Analysis -- 7.6 Conclusion -- References -- Part 2: Machine Learning for Healthcare Systems -- 8 Cardiac Arrhythmia Detection and Classification From ECG Signals Using XGBoost Classifier -- 8.1 Introduction -- 8.2 Materials and Methods -- 8.3 Results and Discussion -- 8.4 Conclusion -- References -- 9 GSA-Based Approach for Gene Selection from Microarray Gene Expression Data -- 9.1 Introduction -- 9.2 Related Works -- 9.3 An Overview of Gravitational Search Algorithm -- 9.4 Proposed Model -- 9.5 Simulation Results -- 9.6 Conclusion -- References -- Part 3: Machine Learning for Security Systems -- 10 On Fusion of NIR and VW Information for Cross-Spectral Iris Matching -- 10.1 Introduction -- 10.2 Preliminary Details -- 10.3 Experiments and Results -- 10.4 Conclusions -- References -- 11 Fake Social Media Profile Detection -- 11.1 Introduction -- 11.2 Related Work -- 11.3 Methodology -- 11.4 Experimental Results -- 11.5 Conclusion and Future Work -- Acknowledgment -- References -- 12 Extraction of the Features of Fingerprints Using Conventional Methods and Convolutional Neural Networks -- 12.1 Introduction -- 12.2 Related Work -- 12.3 Methods and Materials -- 12.4 Results -- 12.5 Conclusion -- Acknowledgements -- References -- 13 Facial Expression Recognition Using Fusion of Deep Learning and Multiple Features -- 13.1 Introduction -- 13.2 Related Work -- 13.3 Proposed Method -- 13.4 Experimental Results -- 13.5 Conclusion -- Acknowledgement -- References -- Part 4: Machine Learning for Classification and Information Retrieval Systems -- 14 AnimNet: An Animal Classification Network using Deep Learning -- 14.1 Introduction -- 14.2 Related Work -- 14.3 Proposed Methodology -- 14.4 Results -- 14.5 Conclusion -- References -- 15 A Hybrid Approach for Feature Extraction From Reviews to Perform Sentiment Analysis. | |
505 | 8 | _a15.1 Introduction -- 15.2 Related Work -- 15.3 The Proposed System -- 15.4 Result Analysis -- 15.5 Conclusion -- References -- 16 Spark-Enhanced Deep Neural Network Framework for Medical Phrase Embedding -- 16.1 Introduction -- 16.2 Related Work -- 16.3 Proposed Approach -- 16.4 Experimental Setup -- 16.5 Results -- 16.6 Conclusion -- References -- 17 Image Anonymization Using Deep Convolutional Generative Adversarial Network -- 17.1 Introduction -- 17.2 Background Information -- 17.3 Image Anonymization to Prevent Model Inversion Attack -- 17.4 Results and Analysis -- 17.5 Conclusion -- References -- Index -- End User License Agreement. | |
520 | _aMachine Learning Algorithms is for machine learning specialists looking to implement solutions to real-world machine learning problems. It talks entirely about the various applications of machine and deep learning techniques, with each chapter dealing with a novel approach of machine learning architecture for a specific application, and then compares the results with previous algorithms. The book discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, sentiment analysis, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the user can easily move from the equations in the book to a computer program. | ||
590 |
_aJohn Wiley and Sons _bWiley Online Library: Complete oBooks |
||
650 | 0 | _aMachine learning. | |
650 | 0 | _aComputer algorithms. | |
650 | 2 | _aAlgorithms | |
650 | 2 | _aMachine Learning | |
650 | 6 | _aApprentissage automatique. | |
650 | 6 | _aAlgorithmes. | |
650 | 7 |
_aalgorithms. _2aat |
|
650 | 7 |
_aComputer algorithms _2fast |
|
650 | 7 |
_aMachine learning _2fast |
|
700 | 1 |
_aSrinivas, Mettu, _eeditor. |
|
700 | 1 |
_aSucharitha, G., _eeditor. |
|
700 | 1 |
_aMatta, Anjanna, _eeditor. |
|
758 |
_ihas work: _aMachine Learning Algorithms and Applications (Text) _1https://id.oclc.org/worldcat/entity/E39PD3gcgbhRW9Fm9GJY8j4bYd _4https://id.oclc.org/worldcat/ontology/hasWork |
||
776 | 0 | 8 |
_iPrint version: _tMachine learning algorithms and applications. _dHoboken : Wiley-Scrivener, 2021 _z9781119768852 _w(OCoLC)1264404859 |
856 | 4 | 0 | _uhttps://onlinelibrary.wiley.com/doi/book/10.1002/9781119769262 |
938 |
_aAskews and Holts Library Services _bASKH _nAH39137260 |
||
938 |
_aEBSCOhost _bEBSC _n2994454 |
||
994 |
_a92 _bINLUM |
||
999 |
_c12825 _d12825 |