000 07638cam a2200673 i 4500
001 on1266222675
003 OCoLC
005 20240523125543.0
006 m o d
007 cr cnu---unuuu
008 210831s2021 nju o 000 0 eng d
040 _aDG1
_beng
_erda
_epn
_cDG1
_dOCLCO
_dOCLCF
_dDG1
_dUKAHL
_dUKMGB
_dN$T
_dOCLCO
_dOCLCQ
_dSFB
_dOCLCQ
_dUPM
_dOCLCQ
_dWSU
_dOCLCO
_dOCLCL
015 _aGBC1D7804
_2bnb
016 7 _a020300524
_2Uk
020 _a9781119769262
_q(electronic bk. ;
_qoBook)
020 _a1119769264
_q(electronic bk. ;
_qoBook)
020 _a1119769248
020 _a9781119769248
_q(electronic bk.)
020 _z9781119768852
020 _z1119768853
024 7 _a10.1002/9781119769262
_2doi
029 1 _aAU@
_b000069952149
029 1 _aUKMGB
_b020300524
035 _a(OCoLC)1266222675
037 _a9781119769248
_bWiley
050 4 _aQ325.5
082 0 4 _a006.3/1
_223
049 _aMAIN
245 0 0 _aMachine learning algorithms and applications /
_cedited by Mettu Srinivas, G. Sucharitha, Anjanna Matta.
264 1 _aHoboken :
_bWiley :
_bScrivener Publishing,
_c2021.
300 _a1 online resource (1 volume)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
588 0 _aPrint version record.
505 0 _aIntro -- Table of Contents -- Title Page -- Copyright -- Acknowledgments -- Preface -- Part 1: Machine Learning for Industrial Applications -- 1 A Learning-Based Visualization Application for Air Quality Evaluation During COVID-19 Pandemic in Open Data Centric Services -- 1.1 Introduction -- 1.2 Literature Survey -- 1.3 Implementation Details -- 1.4 Results and Discussions -- 1.5 Conclusion -- References -- 2 Automatic Counting and Classification of Silkworm Eggs Using Deep Learning -- 2.1 Introduction -- 2.2 Conventional Silkworm Egg Detection Approaches -- 2.3 Proposed Method -- 2.4 Dataset Generation -- 2.5 Results -- 2.6 Conclusion -- Acknowledgment -- References -- 3 A Wind Speed Prediction System Using Deep Neural Networks -- 3.1 Introduction -- 3.2 Methodology -- 3.3 Results and Discussions -- 3.4 Conclusion -- References -- 4 Res-SE-Net: Boosting Performance of ResNets by Enhancing Bridge Connections -- 4.1 Introduction -- 4.2 Related Work -- 4.3 Preliminaries -- 4.4 Proposed Model -- 4.5 Experiments -- 4.6 Results -- 4.7 Conclusion -- References -- 5 Sakshi Aggarwal, Navjot Singh and K.K. Mishra -- 5.1 Genesis -- 5.2 The Big Picture: Artificial Neural Network -- 5.3 Delineating the Cornerstones -- 5.4 Deep Learning Architectures -- 5.5 Why is CNN Preferred for Computer Vision Applications? -- 5.6 Unravel Deep Learning in Medical Diagnostic Systems -- 5.7 Challenges and Future Expectations -- 5.8 Conclusion -- References -- 6 Two-Stage Credit Scoring Model Based on Evolutionary Feature Selection and Ensemble Neural Networks -- 6.1 Introduction -- 6.2 Literature Survey -- 6.3 Proposed Model for Credit Scoring -- 6.4 Results and Discussion -- 6.5 Conclusion -- References -- 7 Enhanced Block-Based Feature Agglomeration Clustering for Video Summarization -- 7.1 Introduction -- 7.2 Related Works -- 7.3 Feature Agglomeration Clustering.
505 8 _a7.4 Proposed Methodology -- 7.5 Results and Analysis -- 7.6 Conclusion -- References -- Part 2: Machine Learning for Healthcare Systems -- 8 Cardiac Arrhythmia Detection and Classification From ECG Signals Using XGBoost Classifier -- 8.1 Introduction -- 8.2 Materials and Methods -- 8.3 Results and Discussion -- 8.4 Conclusion -- References -- 9 GSA-Based Approach for Gene Selection from Microarray Gene Expression Data -- 9.1 Introduction -- 9.2 Related Works -- 9.3 An Overview of Gravitational Search Algorithm -- 9.4 Proposed Model -- 9.5 Simulation Results -- 9.6 Conclusion -- References -- Part 3: Machine Learning for Security Systems -- 10 On Fusion of NIR and VW Information for Cross-Spectral Iris Matching -- 10.1 Introduction -- 10.2 Preliminary Details -- 10.3 Experiments and Results -- 10.4 Conclusions -- References -- 11 Fake Social Media Profile Detection -- 11.1 Introduction -- 11.2 Related Work -- 11.3 Methodology -- 11.4 Experimental Results -- 11.5 Conclusion and Future Work -- Acknowledgment -- References -- 12 Extraction of the Features of Fingerprints Using Conventional Methods and Convolutional Neural Networks -- 12.1 Introduction -- 12.2 Related Work -- 12.3 Methods and Materials -- 12.4 Results -- 12.5 Conclusion -- Acknowledgements -- References -- 13 Facial Expression Recognition Using Fusion of Deep Learning and Multiple Features -- 13.1 Introduction -- 13.2 Related Work -- 13.3 Proposed Method -- 13.4 Experimental Results -- 13.5 Conclusion -- Acknowledgement -- References -- Part 4: Machine Learning for Classification and Information Retrieval Systems -- 14 AnimNet: An Animal Classification Network using Deep Learning -- 14.1 Introduction -- 14.2 Related Work -- 14.3 Proposed Methodology -- 14.4 Results -- 14.5 Conclusion -- References -- 15 A Hybrid Approach for Feature Extraction From Reviews to Perform Sentiment Analysis.
505 8 _a15.1 Introduction -- 15.2 Related Work -- 15.3 The Proposed System -- 15.4 Result Analysis -- 15.5 Conclusion -- References -- 16 Spark-Enhanced Deep Neural Network Framework for Medical Phrase Embedding -- 16.1 Introduction -- 16.2 Related Work -- 16.3 Proposed Approach -- 16.4 Experimental Setup -- 16.5 Results -- 16.6 Conclusion -- References -- 17 Image Anonymization Using Deep Convolutional Generative Adversarial Network -- 17.1 Introduction -- 17.2 Background Information -- 17.3 Image Anonymization to Prevent Model Inversion Attack -- 17.4 Results and Analysis -- 17.5 Conclusion -- References -- Index -- End User License Agreement.
520 _aMachine Learning Algorithms is for machine learning specialists looking to implement solutions to real-world machine learning problems. It talks entirely about the various applications of machine and deep learning techniques, with each chapter dealing with a novel approach of machine learning architecture for a specific application, and then compares the results with previous algorithms. The book discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, sentiment analysis, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the user can easily move from the equations in the book to a computer program.
590 _aJohn Wiley and Sons
_bWiley Online Library: Complete oBooks
650 0 _aMachine learning.
650 0 _aComputer algorithms.
650 2 _aAlgorithms
650 2 _aMachine Learning
650 6 _aApprentissage automatique.
650 6 _aAlgorithmes.
650 7 _aalgorithms.
_2aat
650 7 _aComputer algorithms
_2fast
650 7 _aMachine learning
_2fast
700 1 _aSrinivas, Mettu,
_eeditor.
700 1 _aSucharitha, G.,
_eeditor.
700 1 _aMatta, Anjanna,
_eeditor.
758 _ihas work:
_aMachine Learning Algorithms and Applications (Text)
_1https://id.oclc.org/worldcat/entity/E39PD3gcgbhRW9Fm9GJY8j4bYd
_4https://id.oclc.org/worldcat/ontology/hasWork
776 0 8 _iPrint version:
_tMachine learning algorithms and applications.
_dHoboken : Wiley-Scrivener, 2021
_z9781119768852
_w(OCoLC)1264404859
856 4 0 _uhttps://onlinelibrary.wiley.com/doi/book/10.1002/9781119769262
938 _aAskews and Holts Library Services
_bASKH
_nAH39137260
938 _aEBSCOhost
_bEBSC
_n2994454
994 _a92
_bINLUM
999 _c12825
_d12825