000 | 05577cam a2200865 i 4500 | ||
---|---|---|---|
001 | on1089273491 | ||
003 | OCoLC | ||
005 | 20240523125541.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 190227t20192019njua ob 001 0 eng | ||
010 | _a 2019009632 | ||
040 |
_aDLC _beng _erda _epn _cDLC _dOCLCO _dN$T _dYDX _dEBLCP _dDG1 _dYDX _dUKMGB _dRECBK _dUKAHL _dOCLCF _dOCLCQ _dCOO _dOCLCQ _dBRF _dOCLCO _dOCLCQ _dOCLCO _dOCLCL _dBCC |
||
015 |
_aGBB956595 _2bnb |
||
016 | 7 |
_a019327510 _2Uk |
|
020 |
_a9781119526841 _q(electronic book) |
||
020 |
_a1119526841 _q(electronic book) |
||
020 |
_a9781119526834 _q(electronic book) |
||
020 |
_a1119526833 _q(electronic book) |
||
020 |
_a9781119526865 _q(electronic book) |
||
020 |
_a1119526868 _q(electronic book) |
||
020 |
_z9781119526810 _q(hardcover) |
||
029 | 1 |
_aAU@ _b000065306712 |
|
029 | 1 |
_aAU@ _b000066105039 |
|
029 | 1 |
_aCHNEW _b001050875 |
|
029 | 1 |
_aCHVBK _b567422283 |
|
029 | 1 |
_aUKMGB _b019327510 |
|
035 | _a(OCoLC)1089273491 | ||
037 |
_a9781119526841 _bWiley |
||
042 | _apcc | ||
050 | 1 | 4 |
_aQA76.9.D343 _bL376 2019 |
072 | 7 |
_aCOM _x000000 _2bisacsh |
|
082 | 0 | 0 |
_a006.3/12 _223 |
049 | _aMAIN | ||
100 | 1 |
_aLarose, Chantal D., _eauthor. |
|
245 | 1 | 0 |
_aData science using Python and R / _cChantal D. Larose, Daniel T. Larose. |
264 | 1 |
_aHoboken, NJ : _bJohn Wiley & Sons, Inc, _c2019. |
|
264 | 4 | _c�2019 | |
300 | _a1 online resource (xvii, 238 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bn _2rdamedia |
||
338 |
_aonline resource _bnc _2rdacarrier |
||
504 | _aIncludes bibliographical references and index. | ||
588 | 0 | _aOnline resource; title from digital title page (viewed on April 03, 2019). | |
520 | _aLearn data science by doing data science! Data Science Using Python and R will get you plugged into the world's two most widespread open-source platforms for data science: Python and R. Data science is hot. Bloomberg called data scientist "the hottest job in America." Python and R are the top two open-source data science tools in the world. In Data Science Using Python and R, you will learn step-by-step how to produce hands-on solutions to real-world business problems, using state-of-the-art techniques. Data Science Using Python and R is written for the general reader with no previous analytics or programming experience. An entire chapter is dedicated to learning the basics of Python and R. Then, each chapter presents step-by-step instructions and walkthroughs for solving data science problems using Python and R. Those with analytics experience will appreciate having a one-stop shop for learning how to do data science using Python and R. Topics covered include data preparation, exploratory data analysis, preparing to model the data, decision trees, model evaluation, misclassification costs, naIve Bayes classification, neural networks, clustering, regression modeling, dimension reduction, and association rules mining. Further, exciting new topics such as random forests and general linear models are also included. The book emphasizes data-driven error costs to enhance profitability, which avoids the common pitfalls that may cost a company millions of dollars. Data Science Using Python and R provides exercises at the end of every chapter, totaling over 500 exercises in the book. Readers will therefore have plenty of opportunity to test their newfound data science skills and expertise. In the Hands-on Analysis exercises, readers are challenged to solve interesting business problems using real-world data sets. | ||
505 | 0 | _aIntroduction to data science -- The basics of python and R -- Data preparation -- Exploratory data analysis -- Preparing to model the data -- Decision trees -- Model evaluation -- Na�ive Bayes classification -- Neural networks -- Clustering -- Regression modeling -- Dimension reduction -- Generalized linera models -- Association rules. | |
590 |
_aJohn Wiley and Sons _bWiley Online Library: Complete oBooks |
||
650 | 0 | _aData mining. | |
650 | 0 | _aPython (Computer program language) | |
650 | 0 | _aR (Computer program language) | |
650 | 0 | _aBig data. | |
650 | 0 | _aData structures (Computer science) | |
650 | 6 | _aExploration de donn�ees (Informatique) | |
650 | 6 | _aPython (Langage de programmation) | |
650 | 6 | _aR (Langage de programmation) | |
650 | 6 | _aDonn�ees volumineuses. | |
650 | 6 | _aStructures de donn�ees (Informatique) | |
650 | 7 |
_aCOMPUTERS _xGeneral. _2bisacsh |
|
650 | 7 |
_aBig data _2fast |
|
650 | 7 |
_aData mining _2fast |
|
650 | 7 |
_aData structures (Computer science) _2fast |
|
650 | 7 |
_aPython (Computer program language) _2fast |
|
650 | 7 |
_aR (Computer program language) _2fast |
|
700 | 1 |
_aLarose, Daniel T., _eauthor. |
|
758 |
_ihas work: _aData science using Python and R (Text) _1https://id.oclc.org/worldcat/entity/E39PCGPM8yFdBhpryTc7fG6KYd _4https://id.oclc.org/worldcat/ontology/hasWork |
||
776 | 0 | 8 |
_iPrint version: _aLarose, Chantal D. _tData science using Python and R. _dHoboken, NJ : John Wiley & Sons, Inc, 2019 _z9781119526810 _w(DLC) 2019007280 |
856 | 4 | 0 | _uhttps://onlinelibrary.wiley.com/doi/book/10.1002/9781119526865 |
938 |
_aAskews and Holts Library Services _bASKH _nAH35311470 |
||
938 |
_aProQuest Ebook Central _bEBLB _nEBL5741211 |
||
938 |
_aEBSCOhost _bEBSC _n2091371 |
||
938 |
_aRecorded Books, LLC _bRECE _nrbeEB00758220 |
||
938 |
_aYBP Library Services _bYANK _n16129616 |
||
938 |
_aYBP Library Services _bYANK _n16142906 |
||
994 |
_a92 _bINLUM |
||
999 |
_c12592 _d12592 |