000 05577cam a2200865 i 4500
001 on1089273491
003 OCoLC
005 20240523125541.0
006 m o d
007 cr |||||||||||
008 190227t20192019njua ob 001 0 eng
010 _a 2019009632
040 _aDLC
_beng
_erda
_epn
_cDLC
_dOCLCO
_dN$T
_dYDX
_dEBLCP
_dDG1
_dYDX
_dUKMGB
_dRECBK
_dUKAHL
_dOCLCF
_dOCLCQ
_dCOO
_dOCLCQ
_dBRF
_dOCLCO
_dOCLCQ
_dOCLCO
_dOCLCL
_dBCC
015 _aGBB956595
_2bnb
016 7 _a019327510
_2Uk
020 _a9781119526841
_q(electronic book)
020 _a1119526841
_q(electronic book)
020 _a9781119526834
_q(electronic book)
020 _a1119526833
_q(electronic book)
020 _a9781119526865
_q(electronic book)
020 _a1119526868
_q(electronic book)
020 _z9781119526810
_q(hardcover)
029 1 _aAU@
_b000065306712
029 1 _aAU@
_b000066105039
029 1 _aCHNEW
_b001050875
029 1 _aCHVBK
_b567422283
029 1 _aUKMGB
_b019327510
035 _a(OCoLC)1089273491
037 _a9781119526841
_bWiley
042 _apcc
050 1 4 _aQA76.9.D343
_bL376 2019
072 7 _aCOM
_x000000
_2bisacsh
082 0 0 _a006.3/12
_223
049 _aMAIN
100 1 _aLarose, Chantal D.,
_eauthor.
245 1 0 _aData science using Python and R /
_cChantal D. Larose, Daniel T. Larose.
264 1 _aHoboken, NJ :
_bJohn Wiley & Sons, Inc,
_c2019.
264 4 _c�2019
300 _a1 online resource (xvii, 238 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bn
_2rdamedia
338 _aonline resource
_bnc
_2rdacarrier
504 _aIncludes bibliographical references and index.
588 0 _aOnline resource; title from digital title page (viewed on April 03, 2019).
520 _aLearn data science by doing data science! Data Science Using Python and R will get you plugged into the world's two most widespread open-source platforms for data science: Python and R. Data science is hot. Bloomberg called data scientist "the hottest job in America." Python and R are the top two open-source data science tools in the world. In Data Science Using Python and R, you will learn step-by-step how to produce hands-on solutions to real-world business problems, using state-of-the-art techniques. Data Science Using Python and R is written for the general reader with no previous analytics or programming experience. An entire chapter is dedicated to learning the basics of Python and R. Then, each chapter presents step-by-step instructions and walkthroughs for solving data science problems using Python and R. Those with analytics experience will appreciate having a one-stop shop for learning how to do data science using Python and R. Topics covered include data preparation, exploratory data analysis, preparing to model the data, decision trees, model evaluation, misclassification costs, naIve Bayes classification, neural networks, clustering, regression modeling, dimension reduction, and association rules mining. Further, exciting new topics such as random forests and general linear models are also included. The book emphasizes data-driven error costs to enhance profitability, which avoids the common pitfalls that may cost a company millions of dollars. Data Science Using Python and R provides exercises at the end of every chapter, totaling over 500 exercises in the book. Readers will therefore have plenty of opportunity to test their newfound data science skills and expertise. In the Hands-on Analysis exercises, readers are challenged to solve interesting business problems using real-world data sets.
505 0 _aIntroduction to data science -- The basics of python and R -- Data preparation -- Exploratory data analysis -- Preparing to model the data -- Decision trees -- Model evaluation -- Na�ive Bayes classification -- Neural networks -- Clustering -- Regression modeling -- Dimension reduction -- Generalized linera models -- Association rules.
590 _aJohn Wiley and Sons
_bWiley Online Library: Complete oBooks
650 0 _aData mining.
650 0 _aPython (Computer program language)
650 0 _aR (Computer program language)
650 0 _aBig data.
650 0 _aData structures (Computer science)
650 6 _aExploration de donn�ees (Informatique)
650 6 _aPython (Langage de programmation)
650 6 _aR (Langage de programmation)
650 6 _aDonn�ees volumineuses.
650 6 _aStructures de donn�ees (Informatique)
650 7 _aCOMPUTERS
_xGeneral.
_2bisacsh
650 7 _aBig data
_2fast
650 7 _aData mining
_2fast
650 7 _aData structures (Computer science)
_2fast
650 7 _aPython (Computer program language)
_2fast
650 7 _aR (Computer program language)
_2fast
700 1 _aLarose, Daniel T.,
_eauthor.
758 _ihas work:
_aData science using Python and R (Text)
_1https://id.oclc.org/worldcat/entity/E39PCGPM8yFdBhpryTc7fG6KYd
_4https://id.oclc.org/worldcat/ontology/hasWork
776 0 8 _iPrint version:
_aLarose, Chantal D.
_tData science using Python and R.
_dHoboken, NJ : John Wiley & Sons, Inc, 2019
_z9781119526810
_w(DLC) 2019007280
856 4 0 _uhttps://onlinelibrary.wiley.com/doi/book/10.1002/9781119526865
938 _aAskews and Holts Library Services
_bASKH
_nAH35311470
938 _aProQuest Ebook Central
_bEBLB
_nEBL5741211
938 _aEBSCOhost
_bEBSC
_n2091371
938 _aRecorded Books, LLC
_bRECE
_nrbeEB00758220
938 _aYBP Library Services
_bYANK
_n16129616
938 _aYBP Library Services
_bYANK
_n16142906
994 _a92
_bINLUM
999 _c12592
_d12592