000 05831cam a2200829 i 4500
001 on1083673341
003 OCoLC
005 20240523125541.0
006 m o d
007 cr cnu---unuuu
008 190126t20192019njua ob 001 0 eng c
010 _a 2019004054
040 _aYUS
_beng
_cYUS
_dOCLCF
_dN$T
_dEBLCP
_dYDX
_dDG1
_dUIU
_dRECBK
_dDLC
_dOCLCO
_dUKAHL
_dOCLCQ
_dUBY
_dYUS
_dOCLCO
_dOCLCQ
_dOCLCO
_dOCLCL
019 _a1104796068
020 _a9781119488781
_qelectronic book
020 _a1119488788
_qelectronic book
020 _a9781119488774
_qelectronic book
020 _a111948877X
_qelectronic book
020 _z9781119488750
_qhardcover
020 _z1119488753
_qhardcover
020 _a9781119488767
_q(electronic bk.)
020 _a1119488761
_q(electronic bk.)
024 8 _a16278992
029 1 _aCHNEW
_b001055885
029 1 _aCHVBK
_b568742915
029 1 _aAU@
_b000065375673
035 _a(OCoLC)1083673341
_z(OCoLC)1104796068
042 _apcc
050 4 _aTA1638.4
_b.D49 2019
072 7 _aCOM
_x000000
_2bisacsh
082 0 0 _a006.4/2015181
_223
090 _aTA1638.4
_b.D49 2019 (LC)
049 _aMAIN
100 1 _aDey, Sandip,
_d1977-
245 1 0 _aQuantum inspired meta-heuristics for image analysis
_h[electronic resource] /
_cSandip Dey, Siddhartha Bhattacharyya, Ujjwal Maulik.
264 1 _aHoboken, NJ :
_bJohn Wiley & Sons, Inc.,
_c2019.
264 4 _c�2019
300 _a1 online resource ( xvi, 358 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aIncludes bibliographical references and index.
588 _aDescription based on online resource; title from digital title page (viewed on August 14, 2019).
520 _aIntroduces quantum inspired techniques for image analysis for pure and true gray scale/color images in a single/multi-objective environment This book will entice readers to design efficient meta-heuristics for image analysis in the quantum domain. It introduces them to the essence of quantum computing paradigm, its features, and properties, and elaborates on the fundamentals of different meta-heuristics and their application to image analysis. As a result, it will pave the way for designing and developing quantum computing inspired meta-heuristics to be applied to image analysis. Quantum Inspired Meta-heuristics for Image Analysis begins with a brief summary on image segmentation, quantum computing, and optimization. It also highlights a few relevant applications of the quantum based computing algorithms, meta-heuristics approach, and several thresholding algorithms in vogue. Next, it discusses a review of image analysis before moving on to an overview of six popular meta-heuristics and their algorithms and pseudo-codes. Subsequent chapters look at quantum inspired meta-heuristics for bi-level and gray scale multi-level image thresholding; quantum behaved meta-heuristics for true color multi-level image thresholding; and quantum inspired multi-objective algorithms for gray scale multi-level image thresholding. Each chapter concludes with a summary and sample questions. -Provides in-depth analysis of quantum mechanical principles -Offers comprehensive review of image analysis -Analyzes different state-of-the-art image thresholding approaches -Detailed current, popular standard meta-heuristics in use today -Guides readers step by step in the build-up of quantum inspired meta-heuristics -Includes a plethora of real life case studies and applications -Features statistical test analysis of the performances of the quantum inspired meta-heuristics vis-A-vis their conventional counterparts Quantum Inspired Meta-heuristics for Image Analysis is an excellent source of information for anyone working with or learning quantum inspired meta-heuristics for image analysis.
505 0 _aIntroduction -- Review of image analysis -- Overview of meta-heuristics -- Quantum inspired meta-heuristics for bi-level image thresholding -- Quantum inspired meta-heuristics for gray-scale multi-level image thresholding -- Quantum behaved meta-heuristics for true color multi-level image thresholding -- Quantum inspired multi-objective algorithms for multi-level image thresholding -- Conclusion -- Bibliography -- Index -- EULA
590 _aJohn Wiley and Sons
_bWiley Online Library: Complete oBooks
650 0 _aImage segmentation.
650 0 _aImage analysis.
650 0 _aMetaheuristics.
650 0 _aHeuristic algorithms.
650 6 _aSegmentation d'image.
650 6 _aAnalyse d'images.
650 6 _aM�etaheuristiques.
650 6 _aAlgorithmes heuristiques.
650 7 _aCOMPUTERS / General
_2bisacsh
650 7 _aHeuristic algorithms
_2fast
650 7 _aImage analysis
_2fast
650 7 _aImage segmentation
_2fast
650 7 _aMetaheuristics
_2fast
700 1 _aBhattacharyya, Siddhartha,
_d1975-
700 1 _aMaulik, Ujjwal.
_0http://id.loc.gov/authorities/names/n2008180067
710 2 _aWiley InterScience (Online service)
758 _ihas work:
_aQuantum inspired meta-heuristics for image analysis (Text)
_1https://id.oclc.org/worldcat/entity/E39PCGxmg8PfmDdhrxKRVrJDmd
_4https://id.oclc.org/worldcat/ontology/hasWork
776 0 8 _iPrint version:
_aDey, Sandip, 1977- author.
_tQuantum inspired meta-heuristics for image analysis
_dHoboken, NJ : Wiley, 2019
_z9781119488750
_w(DLC) 2019001402
856 4 0 _uhttps://onlinelibrary.wiley.com/doi/book/10.1002/9781119488767
938 _aAskews and Holts Library Services
_bASKH
_nAH35878821
938 _aEBSCOhost
_bEBSC
_n2149068
938 _aProQuest Ebook Central
_bEBLB
_nEBL5781623
938 _aYBP Library Services
_bYANK
_n16278992
938 _aRecorded Books, LLC
_bRECE
_nrbeEB00761227
994 _a92
_bINLUM
999 _c12585
_d12585