000 | 05831cam a2200829 i 4500 | ||
---|---|---|---|
001 | on1083673341 | ||
003 | OCoLC | ||
005 | 20240523125541.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 190126t20192019njua ob 001 0 eng c | ||
010 | _a 2019004054 | ||
040 |
_aYUS _beng _cYUS _dOCLCF _dN$T _dEBLCP _dYDX _dDG1 _dUIU _dRECBK _dDLC _dOCLCO _dUKAHL _dOCLCQ _dUBY _dYUS _dOCLCO _dOCLCQ _dOCLCO _dOCLCL |
||
019 | _a1104796068 | ||
020 |
_a9781119488781 _qelectronic book |
||
020 |
_a1119488788 _qelectronic book |
||
020 |
_a9781119488774 _qelectronic book |
||
020 |
_a111948877X _qelectronic book |
||
020 |
_z9781119488750 _qhardcover |
||
020 |
_z1119488753 _qhardcover |
||
020 |
_a9781119488767 _q(electronic bk.) |
||
020 |
_a1119488761 _q(electronic bk.) |
||
024 | 8 | _a16278992 | |
029 | 1 |
_aCHNEW _b001055885 |
|
029 | 1 |
_aCHVBK _b568742915 |
|
029 | 1 |
_aAU@ _b000065375673 |
|
035 |
_a(OCoLC)1083673341 _z(OCoLC)1104796068 |
||
042 | _apcc | ||
050 | 4 |
_aTA1638.4 _b.D49 2019 |
|
072 | 7 |
_aCOM _x000000 _2bisacsh |
|
082 | 0 | 0 |
_a006.4/2015181 _223 |
090 |
_aTA1638.4 _b.D49 2019 (LC) |
||
049 | _aMAIN | ||
100 | 1 |
_aDey, Sandip, _d1977- |
|
245 | 1 | 0 |
_aQuantum inspired meta-heuristics for image analysis _h[electronic resource] / _cSandip Dey, Siddhartha Bhattacharyya, Ujjwal Maulik. |
264 | 1 |
_aHoboken, NJ : _bJohn Wiley & Sons, Inc., _c2019. |
|
264 | 4 | _c�2019 | |
300 | _a1 online resource ( xvi, 358 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
504 | _aIncludes bibliographical references and index. | ||
588 | _aDescription based on online resource; title from digital title page (viewed on August 14, 2019). | ||
520 | _aIntroduces quantum inspired techniques for image analysis for pure and true gray scale/color images in a single/multi-objective environment This book will entice readers to design efficient meta-heuristics for image analysis in the quantum domain. It introduces them to the essence of quantum computing paradigm, its features, and properties, and elaborates on the fundamentals of different meta-heuristics and their application to image analysis. As a result, it will pave the way for designing and developing quantum computing inspired meta-heuristics to be applied to image analysis. Quantum Inspired Meta-heuristics for Image Analysis begins with a brief summary on image segmentation, quantum computing, and optimization. It also highlights a few relevant applications of the quantum based computing algorithms, meta-heuristics approach, and several thresholding algorithms in vogue. Next, it discusses a review of image analysis before moving on to an overview of six popular meta-heuristics and their algorithms and pseudo-codes. Subsequent chapters look at quantum inspired meta-heuristics for bi-level and gray scale multi-level image thresholding; quantum behaved meta-heuristics for true color multi-level image thresholding; and quantum inspired multi-objective algorithms for gray scale multi-level image thresholding. Each chapter concludes with a summary and sample questions. -Provides in-depth analysis of quantum mechanical principles -Offers comprehensive review of image analysis -Analyzes different state-of-the-art image thresholding approaches -Detailed current, popular standard meta-heuristics in use today -Guides readers step by step in the build-up of quantum inspired meta-heuristics -Includes a plethora of real life case studies and applications -Features statistical test analysis of the performances of the quantum inspired meta-heuristics vis-A-vis their conventional counterparts Quantum Inspired Meta-heuristics for Image Analysis is an excellent source of information for anyone working with or learning quantum inspired meta-heuristics for image analysis. | ||
505 | 0 | _aIntroduction -- Review of image analysis -- Overview of meta-heuristics -- Quantum inspired meta-heuristics for bi-level image thresholding -- Quantum inspired meta-heuristics for gray-scale multi-level image thresholding -- Quantum behaved meta-heuristics for true color multi-level image thresholding -- Quantum inspired multi-objective algorithms for multi-level image thresholding -- Conclusion -- Bibliography -- Index -- EULA | |
590 |
_aJohn Wiley and Sons _bWiley Online Library: Complete oBooks |
||
650 | 0 | _aImage segmentation. | |
650 | 0 | _aImage analysis. | |
650 | 0 | _aMetaheuristics. | |
650 | 0 | _aHeuristic algorithms. | |
650 | 6 | _aSegmentation d'image. | |
650 | 6 | _aAnalyse d'images. | |
650 | 6 | _aM�etaheuristiques. | |
650 | 6 | _aAlgorithmes heuristiques. | |
650 | 7 |
_aCOMPUTERS / General _2bisacsh |
|
650 | 7 |
_aHeuristic algorithms _2fast |
|
650 | 7 |
_aImage analysis _2fast |
|
650 | 7 |
_aImage segmentation _2fast |
|
650 | 7 |
_aMetaheuristics _2fast |
|
700 | 1 |
_aBhattacharyya, Siddhartha, _d1975- |
|
700 | 1 |
_aMaulik, Ujjwal. _0http://id.loc.gov/authorities/names/n2008180067 |
|
710 | 2 | _aWiley InterScience (Online service) | |
758 |
_ihas work: _aQuantum inspired meta-heuristics for image analysis (Text) _1https://id.oclc.org/worldcat/entity/E39PCGxmg8PfmDdhrxKRVrJDmd _4https://id.oclc.org/worldcat/ontology/hasWork |
||
776 | 0 | 8 |
_iPrint version: _aDey, Sandip, 1977- author. _tQuantum inspired meta-heuristics for image analysis _dHoboken, NJ : Wiley, 2019 _z9781119488750 _w(DLC) 2019001402 |
856 | 4 | 0 | _uhttps://onlinelibrary.wiley.com/doi/book/10.1002/9781119488767 |
938 |
_aAskews and Holts Library Services _bASKH _nAH35878821 |
||
938 |
_aEBSCOhost _bEBSC _n2149068 |
||
938 |
_aProQuest Ebook Central _bEBLB _nEBL5781623 |
||
938 |
_aYBP Library Services _bYANK _n16278992 |
||
938 |
_aRecorded Books, LLC _bRECE _nrbeEB00761227 |
||
994 |
_a92 _bINLUM |
||
999 |
_c12585 _d12585 |