000 | 08825cam a2200661Ma 4500 | ||
---|---|---|---|
001 | ocn933443004 | ||
003 | OCoLC | ||
005 | 20240523125539.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 151225t20152016inu o 001 0 eng d | ||
040 |
_aIDEBK _beng _epn _cIDEBK _dDG1 _dOCLCF _dOCLCQ _dDEBBG _dOCLCQ _dMERUC _dDG1 _dLIP _dOCLCQ _dU3W _dOCLCQ _dAU@ _dOCLCQ _dOCLCO _dOCLCQ _dOCLCO _dOCLCL |
||
020 |
_a1119238846 _q(electronic bk.) |
||
020 |
_a9781119238843 _q(electronic bk.) |
||
020 |
_a9781119238881 _q(electronic bk.) |
||
020 |
_a1119238889 _q(electronic bk.) |
||
020 | _z1119181119 | ||
020 | _z1119181380 | ||
029 | 1 |
_aAU@ _b000061151059 |
|
029 | 1 |
_aAU@ _b000062461365 |
|
029 | 1 |
_aCHNEW _b000945052 |
|
029 | 1 |
_aCHVBK _b480252912 |
|
029 | 1 |
_aDEBBG _bBV043738237 |
|
029 | 1 |
_aDEBSZ _b485064480 |
|
029 | 1 |
_aGBVCP _b856575704 |
|
035 | _a(OCoLC)933443004 | ||
037 |
_a881790 _bMIL |
||
050 | 4 | _aH62 | |
082 | 0 | 4 |
_a001.4/2 _223 |
049 | _aMAIN | ||
100 | 1 | _aSchmarzo, Bill. | |
245 | 1 | 0 |
_aBig data MBA : _bdriving business strategies with data sciences / _cBill Schmarzo. |
260 |
_aIndianapolis, IN : _bWiley, _c2015, �2016. |
||
300 | _a1 online resource | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
500 | _aIncludes index. | ||
588 | 0 | _aPrint version record. | |
505 | 0 | _aCover -- Title Page -- Copyright -- Contents -- Part I Business Potential of Big Data -- Chapter 1 The Big Data Business Mandate -- Big Data MBA Introduction -- Focus Big Data on Driving Competitive Differentiation -- Leveraging Technology to Power Competitive Differentiation -- History Lesson on Economic-Driven Business Transformation -- Critical Importance of "Thinking Differently" -- Don't Think Big Data Technology, Think Business Transformation -- Don't Think Business Intelligence, Think Data Science -- Don't Think Data Warehouse, Think Data Lake -- Don't Think "What Happened," Think "What Will Happen" -- Don't Think HIPPO, Think Collaboration -- Summary -- Homework Assignment -- Chapter 2 Big Data Business Model Maturity Index -- Introducing the Big Data Business Model Maturity Index -- Phase 1: Business Monitoring -- Phase 2: Business Insights -- Phase 3: Business Optimization -- Phase 4: Data Monetization -- Phase 5: Business Metamorphosis -- Big Data Business Model Maturity Index Lessons Learned -- Lesson 1: Focus Initial Big Data Efforts Internally -- Lesson 2: Leverage Insights to Create New Monetization Opportunities -- Lesson 3: Preparing for Organizational Transformation -- Summary -- Homework Assignment -- Chapter 3 The Big Data Strategy Document -- Establishing Common Business Terminology -- Introducing the Big Data Strategy Document -- Identifying the Organization's Key Business Initiatives -- What's Important to Chipotle? -- Identify Key Business Entities and Key Decisions -- Identify Financial Drivers (Use Cases) -- Identify and Prioritize Data Sources -- Introducing the Prioritization Matrix -- Using the Big Data Strategy Document to Win the World Series -- Summary -- Homework Assignment -- Chapter 4 The Importance of the User Experience -- The Unintelligent User Experience -- Capture the Key Decisions. | |
505 | 8 | _aSupport the User Decisions -- Consumer Case Study: Improve Customer Engagement -- Business Case Study: Enable Frontline Employees -- Store Manager Dashboard -- Sample Use Case: Competitive Analysis -- Additional Use Cases -- B2B Case Study: Make the Channel More Effective -- The Advisors Are Your Partners-Make Them Successful -- Financial Advisor Case Study -- Informational Sections of Financial Advisor Dashboard -- Recommendations Section of Financial Advisor Dashboard -- Summary -- Homework Assignment -- Part II Data Science -- Chapter 5 Differences Between Business Intelligence and Data Science -- What Is Data Science? -- BI Versus Data Science: The Questions Are Different -- BI Questions -- Data Science Questions -- The Analyst Characteristics Are Different -- The Analytic Approaches Are Different -- Business Intelligence Analyst Engagement Process -- The Data Scientist Engagement Process -- The Data Models Are Different -- Data Modeling for BI -- Data Modeling for Data Science -- The View of the Business Is Different -- Summary -- Homework Assignment -- Chapter 6 Data Science 101 -- Data Science Case Study Setup -- Fundamental Exploratory Analytics -- Trend Analysis -- Boxplots -- Geographical (Spatial) Analysis -- Pairs Plot -- Time Series Decomposition -- Analytic Algorithms and Models -- Cluster Analysis -- Normal Curve Equivalent (NCE) Analysis -- Association Analysis -- Graph Analysis -- Text Mining -- Sentiment Analysis -- Traverse Pattern Analysis -- Decision Tree Classifier Analysis -- Cohorts Analysis -- Summary -- Homework Assignment -- Chapter 7 The Data Lake -- Introduction to the Data Lake -- Characteristics of a Business-Ready Data Lake -- Using the Data Lake to Cross the Analytics Chasm -- Modernize Your Data and Analytics Environment -- Action #1: Create a Hadoop-Based Data Lake -- Action #2: Introduce the Analytics Sandbox. | |
505 | 8 | _aAction #3: Off-Load ETL Processes from Data Warehouses -- Analytics Hub and Spoke Analytics Architecture -- Early Learnings -- Lesson #1: The Name Is Not Important -- Lesson #2: It's Data Lake, Not Data Lakes -- Lesson #3: Data Governance Is a Life Cycle, Not a Project -- Lesson #4: Data Lake Sits Before Your Data Warehouse, Not After It -- What Does the Future Hold? -- Summary -- Homework Assignment -- Part III Data Science for Business Stakeholders -- Chapter 8 Thinking Like a Data Scientist -- The Process of Thinking Like a Data Scientist -- Step 1: Identify Key Business Initiative -- Step 2: Develop Business Stakeholder Personas -- Step 3: Identify Strategic Nouns -- Step 4: Capture Business Decisions -- Step 5: Brainstorm Business Questions -- Step 8: Putting Analytics into Action -- Summary -- Homework Assignment -- Chapter 9 "By" Analysis Technique -- "By" Analysis Introduction -- "By" Analysis Exercise -- Foot Locker Use Case "By" Analysis -- Summary -- Homework Assignment -- Chapter 10 Score Development Technique -- Definition of a Score -- FICO Score Example -- Other Industry Score Examples -- LeBron James Exercise Continued -- Foot Locker Example Continued -- Summary -- Homework Assignment -- Chapter 11 Monetization Exercise -- Fitness Tracker Monetization Example -- Step 1: Understand Product Usage -- Step 2: Develop Stakeholder Personas -- Step 3: Brainstorm Potential Recommendations -- Step 4: Identify Supporting Data Sources -- Step 5: Prioritize Monetization Opportunities -- Step 6: Develop Monetization Plan -- Summary -- Homework Assignment -- Chapter 12 Metamorphosis Exercise -- Business Metamorphosis Review -- Business Metamorphosis Exercise -- Articulate the Business Metamorphosis Vision -- Understand Your Customers -- Articulate Value Propositions -- Define Data and Analytic Requirements -- Business Metamorphosis in Health Care. | |
520 | _aHomework Assignment -- Part IV Building Cross-Organizational Support -- Chapter 13 Power of Envisioning -- Envisioning: Fueling Creative Thinking -- Big Data Vision Workshop Process -- Pre-engagement Research -- Business Stakeholder Interviews -- Explore with Data Science -- Workshop -- Setting Up the Workshop -- The Prioritization Matrix -- Summary -- Homework Assignment -- Chapter 14 Organizational Ramifications -- Chief Data Monetization Officer -- CDMO Responsibilities -- CDMO Organization -- Analytics Center of Excellence -- CDMO Leadership -- Privacy, Trust, and Decision Governance -- Privacy Issues = Trust Issues -- Decision Governance -- Unleashing Organizational Creativity -- Summary -- Homework Assignment -- Chapter 15 Stories -- Customer and Employee Analytics -- Product and Device Analytics -- Network and Operational Analytics -- Characteristics of a Good Business Story -- Summary -- Homework Assignment -- Index -- EULA. | ||
590 |
_aJohn Wiley and Sons _bWiley Online Library: Complete oBooks |
||
650 | 0 | _aQuantitative research. | |
650 | 0 | _aManagement information systems. | |
650 | 0 | _aBig data. | |
650 | 6 | _aRecherche quantitative. | |
650 | 6 | _aSyst�emes d'information de gestion. | |
650 | 6 | _aDonn�ees volumineuses. | |
650 | 7 |
_aBig data _2fast |
|
650 | 7 |
_aManagement information systems _2fast |
|
650 | 7 |
_aQuantitative research _2fast |
|
758 |
_ihas work: _aBig data MBA (Text) _1https://id.oclc.org/worldcat/entity/E39PCFYDVhRCrpqCJmfTDTrrMP _4https://id.oclc.org/worldcat/ontology/hasWork |
||
856 | 4 | 0 | _uhttps://onlinelibrary.wiley.com/doi/book/10.1002/9781119238881 |
938 |
_aProQuest MyiLibrary Digital eBook Collection _bIDEB _ncis33418058 |
||
994 |
_a92 _bINLUM |
||
999 |
_c12314 _d12314 |