000 07271cam a2200925 i 4500
001 ocm85784185
003 OCoLC
005 20240523125529.0
006 m o d
007 cr cn|||||||||
008 070307t20062006njua ob 001 0 eng d
040 _aDG1
_beng
_erda
_epn
_cDG1
_dBAKER
_dOKU
_dDG1
_dYDXCP
_dIEEEE
_dOCLCQ
_dDG1
_dGBVCP
_dOCLCQ
_dN$T
_dDST
_dTEFOD
_dEBLCP
_dE7B
_dMHW
_dNUKAT
_dREDDC
_dCOO
_dDEBSZ
_dFTU
_dBTCTA
_dMERUC
_dIDEBK
_dINUAS
_dOCLCF
_dOCLCQ
_dMUX
_dUKWOH
_dNRU
_dUKDOC
_dOCLCQ
_dTEFOD
_dNNO
_dDEBBG
_dDG1
_dOCLCQ
_dLIP
_dOCLCQ
_dESU
_dOCLCQ
_dUAB
_dBUF
_dOCLCQ
_dCEF
_dVT2
_dOCLCQ
_dAU@
_dOCLCQ
_dWYU
_dYOU
_dU3W
_dOCLCQ
_dOL$
_dOCLCQ
_dLEAUB
_dKIJ
_dOCLCQ
_dUKAHL
_dOCLCO
_dOCLCQ
_dOCLCO
_dOCLCQ
_dOCLCL
_dSFB
_dOCLCQ
016 7 _z013301496
_2Uk
019 _a64185846
_a70160629
_a70821819
_a85820743
_a156809570
_a181837905
_a209581249
_a263593234
_a441749408
_a489550185
_a647800679
_a795324583
_a990609270
_a990745043
_a1027381651
_a1044263298
_a1048096421
_a1050973574
_a1056398756
_a1060863937
_a1060953156
_a1064898414
_a1073061268
_a1086440175
020 _a9780471756484
_q(electronic bk.)
020 _a0471756482
_q(electronic bk.)
020 _a9780471756477
_q(electronic bk.)
020 _a0471756474
_q(electronic bk.)
020 _a9781118868676
020 _a1118868676
020 _z9780471666561
_q(print)
020 _z0471666564
_q(print)
024 7 _a10.1002/0471756482
_2doi
029 1 _aAU@
_b000041489242
029 1 _aAU@
_b000048760936
029 1 _aAU@
_b000051473107
029 1 _aAU@
_b000053281475
029 1 _aDEBBG
_bBV042988332
029 1 _aDEBSZ
_b377427241
029 1 _aDEBSZ
_b400439476
029 1 _aDEBSZ
_b43031910X
029 1 _aDEBSZ
_b475040678
029 1 _aGBVCP
_b091521181
029 1 _aNLGGC
_b292177356
035 _a(OCoLC)85784185
_z(OCoLC)64185846
_z(OCoLC)70160629
_z(OCoLC)70821819
_z(OCoLC)85820743
_z(OCoLC)156809570
_z(OCoLC)181837905
_z(OCoLC)209581249
_z(OCoLC)263593234
_z(OCoLC)441749408
_z(OCoLC)489550185
_z(OCoLC)647800679
_z(OCoLC)795324583
_z(OCoLC)990609270
_z(OCoLC)990745043
_z(OCoLC)1027381651
_z(OCoLC)1044263298
_z(OCoLC)1048096421
_z(OCoLC)1050973574
_z(OCoLC)1056398756
_z(OCoLC)1060863937
_z(OCoLC)1060953156
_z(OCoLC)1064898414
_z(OCoLC)1073061268
_z(OCoLC)1086440175
037 _a110527837
_bWiley InterScience
_nhttp://www3.interscience.wiley.com
037 _aAD276CF7-3836-405A-9ACE-537E7EBE4A7D
_bOverDrive, Inc.
_nhttp://www.overdrive.com
050 4 _aQA76.9.D343
_bL378 2006
072 7 _aCOM
_x084010
_2bisacsh
072 7 _aCOM
_x021000
_2bisacsh
072 7 _aCOM
_x030000
_2bisacsh
082 0 4 _a005.74
_222
084 _a54.64
_2bcl
049 _aMAIN
100 1 _aLarose, Daniel T.,
_eauthor
_4aut
245 1 0 _aData mining methods and models /
_cDaniel T. Larose.
264 1 _aHoboken, NJ :
_bWiley-Interscience,
_c[2006]
264 4 _c�2006
300 _a1 online resource (xvi, 322 pages) :
_billustrations
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
504 _aIncludes bibliographical references and index.
505 0 0 _g1.
_tDIMENSION REDUCTION METHODS.
_tNeed for Dimension Reduction in Data Mining.
_tPrincipal Components Analysis.
_tFactor Analysis.
_tUser-Defined Composites --
_g2.
_tREGRESSION MODELING.
_tExample of Simple Linear Regression.
_tLeast-Squares Estimates.
_tCoefficient of Determination.
_tStandard Error of the Estimate.
_tCorrelation Coefficient.
_tANOVA Table.
_tOutliers, High Leverage Points, and Influential Observations.
_tRegression Model.
_tInference in Regression.
_tVerifying the Regression Assumptions.
_tExample: Baseball Data Set.
_tExample: California Data Set.
_tTransformations to Achieve Linearity --
_g3.
_tMULTIPLE REGRESSION AND MODEL BUILDING.
_tExample of Multiple Regression.
_tMultiple Regression Model.
_tInference in Multiple Regression.
_tRegression with Categorical Predictors.
_tMulticollinearity.
_tVariable Selection Methods.
_tApplication of the Variable Selection Methods.
_tMallows' Cp Statistic.
_tVariable Selection Criteria.
_tUsing the Principal Components as Predictors --
_g4.
_tLOGISTIC REGRESSION.
_tSimple Example of Logistic Regression.
_tMaximum Likelihood Estimation.
_tInterpreting Logistic Regression Output.
_tInference: Are the Predictors Significant?.
_tInterpreting a Logistic Regression Model.
_tAssumption of Linearity.
_tZero-Cell Problem.
_tMultiple Logistic Regression.
_tIntroducing Higher-Order Terms to Handle Nonlinearity.
_tValidating the Logistic Regression Model.
_tWEKA: Hands-on Analysis Using Logistic Regression --
_g5.
_tNAIVE BAYES ESTIMATION AND BAYESIAN NETWORKS.
_tBayesian Approach.
_tMaximum a Posteriori Classification.
_tNa�ive Bayes Classification.
_tWEKA: Hands-on Analysis Using Naive Bayes.
_tBayesian Belief Networks.
_tWEKA: Hands-On Analysis Using the Bayes Net Classifier --
_g6.
_tGENETIC ALGORITHMS.
_tIntroduction to Genetic Algorithms.
_tBasic Framework of a Genetic Algorithm.
_tSimple Example of a Genetic Algorithm at Work.
_tModifications and Enhancements: Selection.
_tModifications and Enhancements: Crossover.
_tGenetic Algorithms for Real-Valued Variables.
_tUsing Genetic Algorithms to Train a Neural Network.
_tWEKA: Hands-on Analysis Using Genetic Algorithms --
_g7.
_tCASE STUDY: MODELING RESPONSE TO DIRECT MAIL MARKETING.
_tCross-Industry Standard Process for Data Mining.
_tBusiness Understanding Phase.
_tData Understanding and Data Preparation Phases.
_tModeling and Evaluation Phases.
520 _aProvides an introduction into data mining methods and models, including association rules, clustering, K-nearest neighbor, statistical inference, neural networks, linear and logistic regression, and multivariate analysis.
588 0 _aPrint version record and online resource; title from PDF title page (IEEE Xplore, viewed March 14, 2014).
590 _aJohn Wiley and Sons
_bWiley Online Library: Complete oBooks
650 0 _aData mining.
650 2 _aData Mining
650 6 _aExploration de donn�ees (Informatique)
650 7 _aCOMPUTERS
_xDesktop Applications
_xDatabases.
_2bisacsh
650 7 _aCOMPUTERS
_xDatabase Management
_xGeneral.
_2bisacsh
650 7 _aCOMPUTERS
_xSystem Administration
_xStorage & Retrieval.
_2bisacsh
650 7 _aData mining
_2fast
653 _aElectrical and Electronics Engineering
758 _ihas work:
_aData Mining Methods and Models (Text)
_1https://id.oclc.org/worldcat/entity/E39PCGGwRdch76W8PT3JbmbbFq
_4https://id.oclc.org/worldcat/ontology/hasWork
776 0 8 _iPrint version:
_aLarose, Daniel T.
_tData mining methods and models.
_dHoboken, NJ : Wiley-Interscience, �2006
_z0471666564
_z9780471666561
_w(DLC) 2005010801
_w(OCoLC)59223748
856 4 0 _uhttps://onlinelibrary.wiley.com/doi/book/10.1002/0471756482
938 _a123Library
_b123L
_n10193
938 _aAskews and Holts Library Services
_bASKH
_nAH13383702
938 _aBaker & Taylor
_bBKTY
_c95.50
_d95.50
_i0471756482
_n0007317929
_sactive
938 _aBaker and Taylor
_bBTCP
_nBK0007317929
938 _aProQuest Ebook Central
_bEBLB
_nEBL251672
938 _aebrary
_bEBRY
_nebr10305139
938 _aEBSCOhost
_bEBSC
_n149073
938 _aProQuest MyiLibrary Digital eBook Collection
_bIDEB
_n31166
938 _aYBP Library Services
_bYANK
_n2943362
938 _aYBP Library Services
_bYANK
_n2394575
994 _a92
_bINLUM
999 _c11133
_d11133