000 | 07271cam a2200925 i 4500 | ||
---|---|---|---|
001 | ocm85784185 | ||
003 | OCoLC | ||
005 | 20240523125529.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 070307t20062006njua ob 001 0 eng d | ||
040 |
_aDG1 _beng _erda _epn _cDG1 _dBAKER _dOKU _dDG1 _dYDXCP _dIEEEE _dOCLCQ _dDG1 _dGBVCP _dOCLCQ _dN$T _dDST _dTEFOD _dEBLCP _dE7B _dMHW _dNUKAT _dREDDC _dCOO _dDEBSZ _dFTU _dBTCTA _dMERUC _dIDEBK _dINUAS _dOCLCF _dOCLCQ _dMUX _dUKWOH _dNRU _dUKDOC _dOCLCQ _dTEFOD _dNNO _dDEBBG _dDG1 _dOCLCQ _dLIP _dOCLCQ _dESU _dOCLCQ _dUAB _dBUF _dOCLCQ _dCEF _dVT2 _dOCLCQ _dAU@ _dOCLCQ _dWYU _dYOU _dU3W _dOCLCQ _dOL$ _dOCLCQ _dLEAUB _dKIJ _dOCLCQ _dUKAHL _dOCLCO _dOCLCQ _dOCLCO _dOCLCQ _dOCLCL _dSFB _dOCLCQ |
||
016 | 7 |
_z013301496 _2Uk |
|
019 |
_a64185846 _a70160629 _a70821819 _a85820743 _a156809570 _a181837905 _a209581249 _a263593234 _a441749408 _a489550185 _a647800679 _a795324583 _a990609270 _a990745043 _a1027381651 _a1044263298 _a1048096421 _a1050973574 _a1056398756 _a1060863937 _a1060953156 _a1064898414 _a1073061268 _a1086440175 |
||
020 |
_a9780471756484 _q(electronic bk.) |
||
020 |
_a0471756482 _q(electronic bk.) |
||
020 |
_a9780471756477 _q(electronic bk.) |
||
020 |
_a0471756474 _q(electronic bk.) |
||
020 | _a9781118868676 | ||
020 | _a1118868676 | ||
020 |
_z9780471666561 _q(print) |
||
020 |
_z0471666564 _q(print) |
||
024 | 7 |
_a10.1002/0471756482 _2doi |
|
029 | 1 |
_aAU@ _b000041489242 |
|
029 | 1 |
_aAU@ _b000048760936 |
|
029 | 1 |
_aAU@ _b000051473107 |
|
029 | 1 |
_aAU@ _b000053281475 |
|
029 | 1 |
_aDEBBG _bBV042988332 |
|
029 | 1 |
_aDEBSZ _b377427241 |
|
029 | 1 |
_aDEBSZ _b400439476 |
|
029 | 1 |
_aDEBSZ _b43031910X |
|
029 | 1 |
_aDEBSZ _b475040678 |
|
029 | 1 |
_aGBVCP _b091521181 |
|
029 | 1 |
_aNLGGC _b292177356 |
|
035 |
_a(OCoLC)85784185 _z(OCoLC)64185846 _z(OCoLC)70160629 _z(OCoLC)70821819 _z(OCoLC)85820743 _z(OCoLC)156809570 _z(OCoLC)181837905 _z(OCoLC)209581249 _z(OCoLC)263593234 _z(OCoLC)441749408 _z(OCoLC)489550185 _z(OCoLC)647800679 _z(OCoLC)795324583 _z(OCoLC)990609270 _z(OCoLC)990745043 _z(OCoLC)1027381651 _z(OCoLC)1044263298 _z(OCoLC)1048096421 _z(OCoLC)1050973574 _z(OCoLC)1056398756 _z(OCoLC)1060863937 _z(OCoLC)1060953156 _z(OCoLC)1064898414 _z(OCoLC)1073061268 _z(OCoLC)1086440175 |
||
037 |
_a110527837 _bWiley InterScience _nhttp://www3.interscience.wiley.com |
||
037 |
_aAD276CF7-3836-405A-9ACE-537E7EBE4A7D _bOverDrive, Inc. _nhttp://www.overdrive.com |
||
050 | 4 |
_aQA76.9.D343 _bL378 2006 |
|
072 | 7 |
_aCOM _x084010 _2bisacsh |
|
072 | 7 |
_aCOM _x021000 _2bisacsh |
|
072 | 7 |
_aCOM _x030000 _2bisacsh |
|
082 | 0 | 4 |
_a005.74 _222 |
084 |
_a54.64 _2bcl |
||
049 | _aMAIN | ||
100 | 1 |
_aLarose, Daniel T., _eauthor _4aut |
|
245 | 1 | 0 |
_aData mining methods and models / _cDaniel T. Larose. |
264 | 1 |
_aHoboken, NJ : _bWiley-Interscience, _c[2006] |
|
264 | 4 | _c�2006 | |
300 |
_a1 online resource (xvi, 322 pages) : _billustrations |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | 0 |
_g1. _tDIMENSION REDUCTION METHODS. _tNeed for Dimension Reduction in Data Mining. _tPrincipal Components Analysis. _tFactor Analysis. _tUser-Defined Composites -- _g2. _tREGRESSION MODELING. _tExample of Simple Linear Regression. _tLeast-Squares Estimates. _tCoefficient of Determination. _tStandard Error of the Estimate. _tCorrelation Coefficient. _tANOVA Table. _tOutliers, High Leverage Points, and Influential Observations. _tRegression Model. _tInference in Regression. _tVerifying the Regression Assumptions. _tExample: Baseball Data Set. _tExample: California Data Set. _tTransformations to Achieve Linearity -- _g3. _tMULTIPLE REGRESSION AND MODEL BUILDING. _tExample of Multiple Regression. _tMultiple Regression Model. _tInference in Multiple Regression. _tRegression with Categorical Predictors. _tMulticollinearity. _tVariable Selection Methods. _tApplication of the Variable Selection Methods. _tMallows' Cp Statistic. _tVariable Selection Criteria. _tUsing the Principal Components as Predictors -- _g4. _tLOGISTIC REGRESSION. _tSimple Example of Logistic Regression. _tMaximum Likelihood Estimation. _tInterpreting Logistic Regression Output. _tInference: Are the Predictors Significant?. _tInterpreting a Logistic Regression Model. _tAssumption of Linearity. _tZero-Cell Problem. _tMultiple Logistic Regression. _tIntroducing Higher-Order Terms to Handle Nonlinearity. _tValidating the Logistic Regression Model. _tWEKA: Hands-on Analysis Using Logistic Regression -- _g5. _tNAIVE BAYES ESTIMATION AND BAYESIAN NETWORKS. _tBayesian Approach. _tMaximum a Posteriori Classification. _tNa�ive Bayes Classification. _tWEKA: Hands-on Analysis Using Naive Bayes. _tBayesian Belief Networks. _tWEKA: Hands-On Analysis Using the Bayes Net Classifier -- _g6. _tGENETIC ALGORITHMS. _tIntroduction to Genetic Algorithms. _tBasic Framework of a Genetic Algorithm. _tSimple Example of a Genetic Algorithm at Work. _tModifications and Enhancements: Selection. _tModifications and Enhancements: Crossover. _tGenetic Algorithms for Real-Valued Variables. _tUsing Genetic Algorithms to Train a Neural Network. _tWEKA: Hands-on Analysis Using Genetic Algorithms -- _g7. _tCASE STUDY: MODELING RESPONSE TO DIRECT MAIL MARKETING. _tCross-Industry Standard Process for Data Mining. _tBusiness Understanding Phase. _tData Understanding and Data Preparation Phases. _tModeling and Evaluation Phases. |
520 | _aProvides an introduction into data mining methods and models, including association rules, clustering, K-nearest neighbor, statistical inference, neural networks, linear and logistic regression, and multivariate analysis. | ||
588 | 0 | _aPrint version record and online resource; title from PDF title page (IEEE Xplore, viewed March 14, 2014). | |
590 |
_aJohn Wiley and Sons _bWiley Online Library: Complete oBooks |
||
650 | 0 | _aData mining. | |
650 | 2 | _aData Mining | |
650 | 6 | _aExploration de donn�ees (Informatique) | |
650 | 7 |
_aCOMPUTERS _xDesktop Applications _xDatabases. _2bisacsh |
|
650 | 7 |
_aCOMPUTERS _xDatabase Management _xGeneral. _2bisacsh |
|
650 | 7 |
_aCOMPUTERS _xSystem Administration _xStorage & Retrieval. _2bisacsh |
|
650 | 7 |
_aData mining _2fast |
|
653 | _aElectrical and Electronics Engineering | ||
758 |
_ihas work: _aData Mining Methods and Models (Text) _1https://id.oclc.org/worldcat/entity/E39PCGGwRdch76W8PT3JbmbbFq _4https://id.oclc.org/worldcat/ontology/hasWork |
||
776 | 0 | 8 |
_iPrint version: _aLarose, Daniel T. _tData mining methods and models. _dHoboken, NJ : Wiley-Interscience, �2006 _z0471666564 _z9780471666561 _w(DLC) 2005010801 _w(OCoLC)59223748 |
856 | 4 | 0 | _uhttps://onlinelibrary.wiley.com/doi/book/10.1002/0471756482 |
938 |
_a123Library _b123L _n10193 |
||
938 |
_aAskews and Holts Library Services _bASKH _nAH13383702 |
||
938 |
_aBaker & Taylor _bBKTY _c95.50 _d95.50 _i0471756482 _n0007317929 _sactive |
||
938 |
_aBaker and Taylor _bBTCP _nBK0007317929 |
||
938 |
_aProQuest Ebook Central _bEBLB _nEBL251672 |
||
938 |
_aebrary _bEBRY _nebr10305139 |
||
938 |
_aEBSCOhost _bEBSC _n149073 |
||
938 |
_aProQuest MyiLibrary Digital eBook Collection _bIDEB _n31166 |
||
938 |
_aYBP Library Services _bYANK _n2943362 |
||
938 |
_aYBP Library Services _bYANK _n2394575 |
||
994 |
_a92 _bINLUM |
||
999 |
_c11133 _d11133 |