Hands-On Genetic Algorithms with Python. (Record no. 16128)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 03566nam a2200265uu 4500 |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20250710182909.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 250616s||||||||||||||||o||||||||||| |d |
024 80 - OTHER STANDARD IDENTIFIER | |
Standard number or code | 9781838559182 |
040 ## - CATALOGING SOURCE | |
Original cataloging agency | PACKT |
Transcribing agency | PACKT |
041 ## - LANGUAGE CODE | |
Language code of text/sound track or separate title | en |
044 ## - COUNTRY OF PUBLISHING/PRODUCING ENTITY CODE | |
MARC country code | GB |
100 0# - MAIN ENTRY--PERSONAL NAME | |
Personal name | Eyal Wirsansky |
Relator term | author. |
245 00 - TITLE STATEMENT | |
Title | Hands-On Genetic Algorithms with Python. |
260 ## - PUBLICATION, DISTRIBUTION, ETC. | |
Place of publication, distribution, etc. | GB: |
Name of publisher, distributor, etc. | Packt, |
Date of publication, distribution, etc. | 2020-01-31. |
263 ## - PROJECTED PUBLICATION DATE | |
Projected publication date | 2020-01-31 |
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE | |
Place of production, publication, distribution, manufacture | GB: |
Name of producer, publisher, distributor, manufacturer | Packt, |
300 ## - PHYSICAL DESCRIPTION | |
Extent | 346. |
377 ## - ASSOCIATED LANGUAGE | |
Language code | en |
520 ## - SUMMARY, ETC. | |
Summary, etc. | <p><b>Explore the ever-growing world of genetic algorithms to solve search, optimization, and AI-related tasks, and improve machine learning models using Python libraries such as DEAP, scikit-learn, and NumPy</b></p><h4>Key Features</h4><ul><li>Explore the ins and outs of genetic algorithms with this fast-paced guide</li><li>Implement tasks such as feature selection, search optimization, and cluster analysis using Python</li><li>Solve combinatorial problems, optimize functions, and enhance the performance of artificial intelligence applications</li></ul><h4>Book Description</h4>Genetic algorithms are a family of search, optimization, and learning algorithms inspired by the principles of natural evolution. By imitating the evolutionary process, genetic algorithms can overcome hurdles encountered in traditional search algorithms and provide high-quality solutions for a variety of problems. This book will help you get to grips with a powerful yet simple approach to applying genetic algorithms to a wide range of tasks using Python, covering the latest developments in artificial intelligence. After introducing you to genetic algorithms and their principles of operation, you'll understand how they differ from traditional algorithms and what types of problems they can solve. You'll then discover how they can be applied to search and optimization problems, such as planning, scheduling, gaming, and analytics. As you advance, you'll also learn how to use genetic algorithms to improve your machine learning and deep learning models, solve reinforcement learning tasks, and perform image reconstruction. Finally, you'll cover several related technologies that can open up new possibilities for future applications. By the end of this book, you'll have hands-on experience of applying genetic algorithms in artificial intelligence as well as in numerous other domains.<h4>What you will learn</h4><ul><li>Understand how to use state-of-the-art Python tools to create genetic algorithm-based applications</li><li>Use genetic algorithms to optimize functions and solve planning and scheduling problems</li><li>Enhance the performance of machine learning models and optimize deep learning network architecture</li><li>Apply genetic algorithms to reinforcement learning tasks using OpenAI Gym</li><li>Explore how images can be reconstructed using a set of semi-transparent shapes</li><li>Discover other bio-inspired techniques, such as genetic programming and particle swarm optimization</li></ul><h4>Who this book is for</h4>This book is for software developers, data scientists, and AI enthusiasts who want to use genetic algorithms to carry out intelligent tasks in their applications. Working knowledge of Python and basic knowledge of mathematics and computer science will help you get the most out of this book. |
538 ## - SYSTEM DETAILS NOTE | |
System details note | Data in extended ASCII character set. |
538 ## - SYSTEM DETAILS NOTE | |
System details note | Mode of access: Internet. |
710 2# - ADDED ENTRY--CORPORATE NAME | |
Corporate name or jurisdiction name as entry element | PACKT |
773 0# - HOST ITEM ENTRY | |
Title | Hands-On Genetic Algorithms with Python |
Place, publisher, and date of publication | GB,Packt,2020-01-31 |
Physical description | 346 |
856 40 - ELECTRONIC LOCATION AND ACCESS | |
Uniform Resource Identifier | <a href="https://learning.packt.com/product/426672">https://learning.packt.com/product/426672</a> |
No items available.