NLU Meghalaya Library

Online Public Access Catalogue (OPAC)

Bayesian Analysis with Python. (Record no. 15997)

MARC details
000 -LEADER
fixed length control field 03776nam a2200289uu 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250710182906.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 250616s||||||||||||||||o||||||||||| |d
024 80 - OTHER STANDARD IDENTIFIER
Standard number or code 9781805125419
040 ## - CATALOGING SOURCE
Original cataloging agency PACKT
Transcribing agency PACKT
041 ## - LANGUAGE CODE
Language code of text/sound track or separate title en
044 ## - COUNTRY OF PUBLISHING/PRODUCING ENTITY CODE
MARC country code GB
100 0# - MAIN ENTRY--PERSONAL NAME
Personal name Osvaldo Martin
Relator term author.
245 00 - TITLE STATEMENT
Title Bayesian Analysis with Python.
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. GB:
Name of publisher, distributor, etc. Packt,
Date of publication, distribution, etc. 2024-01-31.
263 ## - PROJECTED PUBLICATION DATE
Projected publication date 2024-01-31
264 #1 - PRODUCTION, PUBLICATION, DISTRIBUTION, MANUFACTURE, AND COPYRIGHT NOTICE
Place of production, publication, distribution, manufacture GB:
Name of producer, publisher, distributor, manufacturer Packt,
300 ## - PHYSICAL DESCRIPTION
Extent 394.
377 ## - ASSOCIATED LANGUAGE
Language code en
520 ## - SUMMARY, ETC.
Summary, etc. <p><b>Learn the fundamentals of Bayesian modeling using state-of-the-art Python libraries, such as PyMC, ArviZ, Bambi, and more, guided by an experienced Bayesian modeler who contributes to these libraries</b></p><h4>Key Features</h4><ul><li>Conduct Bayesian data analysis with step-by-step guidance</li><li>Gain insight into a modern, practical, and computational approach to Bayesian statistical modeling</li><li>Enhance your learning with best practices through sample problems and practice exercises</li><li>Purchase of the print or Kindle book includes a free PDF eBook.</li></ul><h4>Book Description</h4>The third edition of Bayesian Analysis with Python serves as an introduction to the main concepts of applied Bayesian modeling using PyMC, a state-of-the-art probabilistic programming library, and other libraries that support and facilitate modeling like ArviZ, for exploratory analysis of Bayesian models; Bambi, for flexible and easy hierarchical linear modeling; PreliZ, for prior elicitation; PyMC-BART, for flexible non-parametric regression; and Kulprit, for variable selection. In this updated edition, a brief and conceptual introduction to probability theory enhances your learning journey by introducing new topics like Bayesian additive regression trees (BART), featuring updated examples. Refined explanations, informed by feedback and experience from previous editions, underscore the book's emphasis on Bayesian statistics. You will explore various models, including hierarchical models, generalized linear models for regression and classification, mixture models, Gaussian processes, and BART, using synthetic and real datasets. By the end of this book, you will possess a functional understanding of probabilistic modeling, enabling you to design and implement Bayesian models for your data science challenges. You'll be well-prepared to delve into more advanced material or specialized statistical modeling if the need arises.<h4>What you will learn</h4><ul><li>Build probabilistic models using PyMC and Bambi</li><li>Analyze and interpret probabilistic models with ArviZ</li><li>Acquire the skills to sanity-check models and modify them if necessary</li><li>Build better models with prior and posterior predictive checks</li><li>Learn the advantages and caveats of hierarchical models</li><li>Compare models and choose between alternative ones</li><li>Interpret results and apply your knowledge to real-world problems</li><li>Explore common models from a unified probabilistic perspective</li><li>Apply the Bayesian framework's flexibility for probabilistic thinking</li></ul><h4>Who this book is for</h4>If you are a student, data scientist, researcher, or developer looking to get started with Bayesian data analysis and probabilistic programming, this book is for you. The book is introductory, so no previous statistical knowledge is required, although some experience in using Python and scientific libraries like NumPy is expected.
538 ## - SYSTEM DETAILS NOTE
System details note Data in extended ASCII character set.
538 ## - SYSTEM DETAILS NOTE
System details note Mode of access: Internet.
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Christopher Fonnesbeck
Relator term author.
700 0# - ADDED ENTRY--PERSONAL NAME
Personal name Thomas Wiecki
Relator term author.
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element PACKT
773 0# - HOST ITEM ENTRY
Title Bayesian Analysis with Python
Place, publisher, and date of publication GB,Packt,2024-01-31
Physical description 394
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://learning.packt.com/product/461105">https://learning.packt.com/product/461105</a>

No items available.