Bayesian Reasoning and Machine Learning/ (Record no. 13378)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 01605nam a22001817a 4500 |
003 - CONTROL NUMBER IDENTIFIER | |
control field | OSt |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20241104140852.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 241104b |||||||| |||| 00| 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9781107439955 |
040 ## - CATALOGING SOURCE | |
Language of cataloging | eng |
Transcribing agency | NLU |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Edition number | 23rd Ed. |
Classification number | 006.31 |
Item number | BAR |
100 ## - MAIN ENTRY--PERSONAL NAME | |
Personal name | Barber, David |
245 ## - TITLE STATEMENT | |
Title | Bayesian Reasoning and Machine Learning/ |
Statement of responsibility, etc. | By David Barber |
260 ## - PUBLICATION, DISTRIBUTION, ETC. | |
Place of publication, distribution, etc. | New Delhi: |
Name of publisher, distributor, etc. | Cambridge University Press, |
Date of publication, distribution, etc. | 2012. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | 697P;, |
Other physical details | xxiv, |
Dimensions | 24cm. |
500 ## - GENERAL NOTE | |
General note | CONTENTS<br/>Preface<br/>List of Notation<br/>BRML TOOLBOX<br/><br/>I Inference in Probabilistic Models<br/>1. Probabilistic Reasoning.<br/>2. Basic Graph Concepts.<br/>3. Belief Networks.<br/>4. Graphical Models.<br/>5. Efficient Inference in Trees.<br/>6. The Junction Tree Algorithm.<br/>7. Making Decisions.<br/><br/>II Learning in Probabilistic Model<br/>8. Statistics for Machine Learning.<br/>9. Learning as Inference as Inference.<br/>10. Naive Bayes.<br/>11. Learning With Hidden Variables.<br/>12. Bayesian Model Selection.<br/><br/>III Machine Learning<br/>13. Machine Learning Concepts<br/>14. Nearest Neighbour Classification.<br/>15. unsupervised Linear Dimension Reduction.<br/>16. Supervised Linear Dimension reduction.<br/>17. Linear Models.<br/>18. Bayesian Linear Models.<br/>19. Gaussian Processes.<br/>20. Mixture Models.<br/>21. Latent Linear Models.<br/>22. Latent Ability Models.<br/><br/>IV Dynamical Models.<br/>23. Discrete-State Markov Models.<br/>24. Continuous-State Markov Models.<br/>25. Switching Linear Dynamical Systems.<br/>26. Distributed Computation.<br/><br/>V Approximate Interference.<br/>27. Sampling.<br/>28. Deterministic Approximate Inference.<br/>Includes Appendix, Reference and Index.<br/> |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Source of classification or shelving scheme | Dewey Decimal Classification |
Koha item type | Books |
Suppress in OPAC | No |
Withdrawn status | Lost status | Source of classification or shelving scheme | Damaged status | Not for loan | Collection | Home library | Current library | Date acquired | Total checkouts | Full call number | Barcode | Date last seen | Price effective from | Koha item type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dewey Decimal Classification | Computer Science | Central Library | Central Library | 22/05/2024 | 006.31 BAR | 4398 | 04/11/2024 | 22/05/2024 | Books |