NLU Meghalaya Library

Online Public Access Catalogue (OPAC)

Practical machine learning in R / (Record no. 12706)

MARC details
000 -LEADER
fixed length control field 07344cam a2200637 a 4500
001 - CONTROL NUMBER
control field on1151188553
003 - CONTROL NUMBER IDENTIFIER
control field OCoLC
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240523125542.0
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
fixed length control field m o d
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr un|---aucuu
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 200418s2020 enk o 000 0 eng d
040 ## - CATALOGING SOURCE
Original cataloging agency EBLCP
Language of cataloging eng
Description conventions pn
Transcribing agency EBLCP
Modifying agency DG1
-- UKAHL
-- RECBK
-- OCLCF
-- UBY
-- OCLCQ
-- OCLCO
-- OCLCQ
-- OCLCO
-- OCLCQ
-- UPM
-- OCLCQ
-- OCLCO
-- OCLCL
-- DXU
-- OCLCO
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119591542
Qualifying information (electronic bk. ;
-- oBook)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1119591546
Qualifying information (electronic bk. ;
-- oBook)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119591573
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1119591570
029 1# - OTHER SYSTEM CONTROL NUMBER (OCLC)
OCLC library identifier AU@
System control number 000067253883
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)1151188553
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number Q325.5
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 006.3/1
Edition number 23
049 ## - LOCAL HOLDINGS (OCLC)
Holding library MAIN
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Nwanganga, Frederick Chukwuka.
245 10 - TITLE STATEMENT
Title Practical machine learning in R /
Statement of responsibility, etc. Fred Nwanganga, Mike Chapple.
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. London :
Name of publisher, distributor, etc. ISTE, Ltd. ;
Place of publication, distribution, etc. Hoboken :
Name of publisher, distributor, etc. Wiley,
Date of publication, distribution, etc. 2020.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (466 pages)
336 ## - CONTENT TYPE
Content type term text
Content type code txt
Source rdacontent
337 ## - MEDIA TYPE
Media type term computer
Media type code c
Source rdamedia
338 ## - CARRIER TYPE
Carrier type term online resource
Carrier type code cr
Source rdacarrier
588 0# - SOURCE OF DESCRIPTION NOTE
Source of description note Print version record.
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Cover -- Title Page -- Copyright Page -- About the Authors -- About the Technical Editors -- Acknowledgments -- Contents at a Glance -- Contents -- Introduction -- What Does This Book Cover? -- Reader Support for This Book -- Part I Getting Started -- Chapter 1 What Is Machine Learning? -- Discovering Knowledge in Data -- Introducing Algorithms -- Artificial Intelligence, Machine Learning, and Deep Learning -- Machine Learning Techniques -- Supervised Learning -- Unsupervised Learning -- Model Selection -- Classification Techniques -- Regression Techniques -- Similarity Learning Techniques
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note Model Evaluation -- Classification Errors -- Regression Errors -- Types of Error -- Partitioning Datasets -- Holdout Method -- Cross-Validation Methods -- Exercises -- Chapter 2 Introduction to R and RStudio -- Welcome to R -- R and RStudio Components -- The R Language -- RStudio -- RStudio Desktop -- RStudio Server -- Exploring the RStudio Environment -- R Packages -- The CRAN Repository -- Installing Packages -- Loading Packages -- Package Documentation -- Writing and Running an R Script -- Data Types in R -- Vectors -- Testing Data Types -- Converting Data Types -- Missing Values -- Exercises
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note Chapter 3 Managing Data -- The Tidyverse -- Data Collection -- Key Considerations -- Collecting Ground Truth Data -- Data Relevance -- Quantity of Data -- Ethics -- Importing the Data -- Reading Comma-Delimited Files -- Reading Other Delimited Files -- Data Exploration -- Describing the Data -- Instance -- Feature -- Dimensionality -- Sparsity and Density -- Resolution -- Descriptive Statistics -- Visualizing the Data -- Comparison -- Relationship -- Distribution -- Composition -- Data Preparation -- Cleaning the Data -- Missing Values -- Noise -- Outliers -- Class Imbalance
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note Transforming the Data -- Normalization -- Discretization -- Dummy Coding -- Reducing the Data -- Sampling -- Dimensionality Reduction -- Exercises -- Part II Regression -- Chapter 4 Linear Regression -- Bicycle Rentals and Regression -- Relationships Between Variables -- Correlation -- Regression -- Simple Linear Regression -- Ordinary Least Squares Method -- Simple Linear Regression Model -- Evaluating the Model -- Residuals -- Coefficients -- Diagnostics -- Multiple Linear Regression -- The Multiple Linear Regression Model -- Evaluating the Model -- Residual Diagnostics
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note Influential Point Analysis -- Multicollinearity -- Improving the Model -- Considering Nonlinear Relationships -- Considering Categorical Variables -- Considering Interactions Between Variables -- Selecting the Important Variables -- Strengths and Weaknesses -- Case Study: Predicting Blood Pressure -- Importing the Data -- Exploring the Data -- Fitting the Simple Linear Regression Model -- Fitting the Multiple Linear Regression Model -- Exercises -- Chapter 5 Logistic Regression -- Prospecting for Potential Donors -- Classification -- Logistic Regression -- Odds Ratio
500 ## - GENERAL NOTE
General note Binomial Logistic Regression Model
520 ## - SUMMARY, ETC.
Summary, etc. Guides professionals and students through the rapidly growing field of machine learning with hands-on examples in the popular R programming language Machine learning'a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions'allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Practical Machine Learning in R provides a hands-on approach to solving business problems with intelligent, self-learning computer algorithms.' Bestselling author and data analytics experts Fred Nwanganga and Mike Chapple explain what machine learning is, demonstrate its organizational benefits, and provide hands-on examples created in the R programming language. A perfect guide for professional self-taught learners or students in an introductory machine learning course, this reader-friendly book illustrates the numerous real-world business uses of machine learning approaches. Clear and detailed chapters cover data wrangling, R programming with the popular RStudio tool, classification and regression techniques, performance evaluation, and more.' -Explores data management techniques, including data collection, exploration and dimensionality reduction -Covers unsupervised learning, where readers identify and summarize patterns using approaches such as apriori, eclat and clustering -Describes the principles behind the Nearest Neighbor, Decision Tree and Naive Bayes classification techniques -Explains how to evaluate and choose the right model, as well as how to improve model performance using ensemble methods such as Random Forest and XGBoost Practical Machine Learning in R is a must-have guide for business analysts, data scientists, and other professionals interested in leveraging the power of AI to solve business problems, as well as students and independent learners seeking to enter the field.
590 ## - LOCAL NOTE (RLIN)
Local note John Wiley and Sons
Provenance (VM) [OBSOLETE] Wiley Online Library: Complete oBooks
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Machine learning.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element R (Computer program language)
650 #6 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Apprentissage automatique.
650 #6 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element R (Langage de programmation)
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element COMPUTERS
General subdivision Software Development & Engineering
-- General.
Source of heading or term bisacsh
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Machine learning
Source of heading or term fast
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element R (Computer program language)
Source of heading or term fast
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Aprenentatge autom�atic.
Source of heading or term thub
650 #7 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element R (Llenguatge de programaci�o)
Source of heading or term thub
655 #7 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Llibres electr�onics.
Source of term thub
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Chapple, Mike,
Dates associated with a name 1975-
758 ## - RESOURCE IDENTIFIER
Relationship information has work:
Label Practical machine learning in R (Text)
Real World Object URI https://id.oclc.org/worldcat/entity/E39PCGXf4BdG3hGRr6kpvCRhH3
Relationship https://id.oclc.org/worldcat/ontology/hasWork
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Print version:
Main entry heading Nwanganga, Fred.
Title Practical Machine Learning in R.
Place, publisher, and date of publication Newark : John Wiley & Sons, Incorporated, �2020
International Standard Book Number 9781119591511
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="https://onlinelibrary.wiley.com/doi/book/10.1002/9781119591542">https://onlinelibrary.wiley.com/doi/book/10.1002/9781119591542</a>
938 ## -
-- Askews and Holts Library Services
-- ASKH
-- AH36662083
938 ## -
-- ProQuest Ebook Central
-- EBLB
-- EBL6174019
938 ## -
-- Recorded Books, LLC
-- RECE
-- rbeEB00821158
994 ## -
-- 92
-- INLUM

No items available.